{"title":"利用分层固有应变的双壳结构焊接变形减小数值研究","authors":"Cheng Li, Hua Zhai, Lianwei Zhu, Zhihong Liu, Jianguo Ma, Xiaofeng Zhu, Qiong Liu","doi":"10.1016/j.net.2024.09.011","DOIUrl":null,"url":null,"abstract":"Cyclotron is a key scientific tool and indispensable research platform for conducting cutting-edge research in nuclear equipment development as well as innovative applications of nuclear technology. The shell component has a double-layer thick-walled structure with intricate ribs and high-density, full-penetration welded joints. The mitigation of welding deformation is of profound significance to the performance of the cyclotron. The thick plate joint has many welding layers which will be divided into several steps to complete the backing, filler, and cap welding. The equivalent transverse and longitudinal plastic strains of different layers were extracted by the thermo-elastic-plastic method. The welding deformation generated by each layer of weld can be predicted by using the equivalent plastic strain, and the total distortion can be accumulated layer by layer. Numerical simulation and experimental studies were conducted on the welding deformation of the double shell specimen, and the welding sequence and design of the welding fixture were discussed in detail. The digital photogrammetry system was used to monitor the deformation state of the welded parts in real-time. The measured deformation was compared with the simulation results. Ultimately, the deformation of the specimen is controlled at 2.64 mm. The proposed method can flexibly evaluate the impact of each welding layer on welding deformation for multiple welds, which can provide technical guidance for cyclotron engineering manufacturing.","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation of welding deformation diminution for double shell structure using the layered inherent strain\",\"authors\":\"Cheng Li, Hua Zhai, Lianwei Zhu, Zhihong Liu, Jianguo Ma, Xiaofeng Zhu, Qiong Liu\",\"doi\":\"10.1016/j.net.2024.09.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyclotron is a key scientific tool and indispensable research platform for conducting cutting-edge research in nuclear equipment development as well as innovative applications of nuclear technology. The shell component has a double-layer thick-walled structure with intricate ribs and high-density, full-penetration welded joints. The mitigation of welding deformation is of profound significance to the performance of the cyclotron. The thick plate joint has many welding layers which will be divided into several steps to complete the backing, filler, and cap welding. The equivalent transverse and longitudinal plastic strains of different layers were extracted by the thermo-elastic-plastic method. The welding deformation generated by each layer of weld can be predicted by using the equivalent plastic strain, and the total distortion can be accumulated layer by layer. Numerical simulation and experimental studies were conducted on the welding deformation of the double shell specimen, and the welding sequence and design of the welding fixture were discussed in detail. The digital photogrammetry system was used to monitor the deformation state of the welded parts in real-time. The measured deformation was compared with the simulation results. Ultimately, the deformation of the specimen is controlled at 2.64 mm. The proposed method can flexibly evaluate the impact of each welding layer on welding deformation for multiple welds, which can provide technical guidance for cyclotron engineering manufacturing.\",\"PeriodicalId\":19272,\"journal\":{\"name\":\"Nuclear Engineering and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Engineering and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.net.2024.09.011\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.net.2024.09.011","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Numerical investigation of welding deformation diminution for double shell structure using the layered inherent strain
Cyclotron is a key scientific tool and indispensable research platform for conducting cutting-edge research in nuclear equipment development as well as innovative applications of nuclear technology. The shell component has a double-layer thick-walled structure with intricate ribs and high-density, full-penetration welded joints. The mitigation of welding deformation is of profound significance to the performance of the cyclotron. The thick plate joint has many welding layers which will be divided into several steps to complete the backing, filler, and cap welding. The equivalent transverse and longitudinal plastic strains of different layers were extracted by the thermo-elastic-plastic method. The welding deformation generated by each layer of weld can be predicted by using the equivalent plastic strain, and the total distortion can be accumulated layer by layer. Numerical simulation and experimental studies were conducted on the welding deformation of the double shell specimen, and the welding sequence and design of the welding fixture were discussed in detail. The digital photogrammetry system was used to monitor the deformation state of the welded parts in real-time. The measured deformation was compared with the simulation results. Ultimately, the deformation of the specimen is controlled at 2.64 mm. The proposed method can flexibly evaluate the impact of each welding layer on welding deformation for multiple welds, which can provide technical guidance for cyclotron engineering manufacturing.
期刊介绍:
Nuclear Engineering and Technology (NET), an international journal of the Korean Nuclear Society (KNS), publishes peer-reviewed papers on original research, ideas and developments in all areas of the field of nuclear science and technology. NET bimonthly publishes original articles, reviews, and technical notes. The journal is listed in the Science Citation Index Expanded (SCIE) of Thomson Reuters.
NET covers all fields for peaceful utilization of nuclear energy and radiation as follows:
1) Reactor Physics
2) Thermal Hydraulics
3) Nuclear Safety
4) Nuclear I&C
5) Nuclear Physics, Fusion, and Laser Technology
6) Nuclear Fuel Cycle and Radioactive Waste Management
7) Nuclear Fuel and Reactor Materials
8) Radiation Application
9) Radiation Protection
10) Nuclear Structural Analysis and Plant Management & Maintenance
11) Nuclear Policy, Economics, and Human Resource Development