{"title":"用于开放性伤口愈合的具有抗菌止血和清除自由基特性的低肿胀藻酸盐水凝胶。","authors":"Xuebin Ma,Xiao Fu,Jianwen Meng,Hongmei Li,Fang Wang,Huarong Shao,Yang Liu,Fei Liu,Daizhou Zhang,Bo Chi,Jinlai Miao","doi":"10.1088/1748-605x/ad792c","DOIUrl":null,"url":null,"abstract":"Development of a low-cost and biocompatible hydrogel dressing with antimicrobial, antioxidant, and low swelling properties is important for accelerating wound healing. Here, a multifunctional alginate hydrogel dressing was fabricated using the D-(+)-gluconic acid δ-lactone/CaCO3 system. The addition of hyaluronic acid and tannic acid (TA) provides the alginate hydrogel with anti-reactive oxygen species (ROS), hemostatic, and pro-wound healing properties. Notably, soaking the alginate hydrogel in a poly-ε-lysine (EPL) aqueous solution enables the alginate hydrogel to be di-crosslinked with EPL through electrostatic interactions, forming a dense network resembling \"armor\" on the surface. This simple one-step soaking strategy provides the alginate hydrogel with antibacterial and anti-swelling properties. Swelling tests demonstrated that the cross-sectional area of the fully swollen multifunctional alginate hydrogel was only 1.3 times its initial size, thus preventing excessive wound expansion caused by excessive swelling. After 5 hours of in vitro release, only 7% of TA was cumulatively released, indicating a distinctly slow-release behavior. Furthermore, as evidenced by the removal of 2,2-diphenyl-1-picrylhydrazyl free radicals, this integrated alginate hydrogel systems demonstrate a notable capacity to eliminate ROS. Full-thickness skin wound repair experiment and histological analysis of the healing site in mice demonstrate that the developed multifunctional alginate hydrogels have a prominent effect on extracellular matrix formation and promotion of wound closure. Overall, this study introduces a cost-effective and convenient multifunctional hydrogel dressing with high potential for clinical application in treating open wounds.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":"1 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A low-swelling alginate hydrogel with antibacterial hemostatic and radical scavenging properties for open wound healing.\",\"authors\":\"Xuebin Ma,Xiao Fu,Jianwen Meng,Hongmei Li,Fang Wang,Huarong Shao,Yang Liu,Fei Liu,Daizhou Zhang,Bo Chi,Jinlai Miao\",\"doi\":\"10.1088/1748-605x/ad792c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Development of a low-cost and biocompatible hydrogel dressing with antimicrobial, antioxidant, and low swelling properties is important for accelerating wound healing. Here, a multifunctional alginate hydrogel dressing was fabricated using the D-(+)-gluconic acid δ-lactone/CaCO3 system. The addition of hyaluronic acid and tannic acid (TA) provides the alginate hydrogel with anti-reactive oxygen species (ROS), hemostatic, and pro-wound healing properties. Notably, soaking the alginate hydrogel in a poly-ε-lysine (EPL) aqueous solution enables the alginate hydrogel to be di-crosslinked with EPL through electrostatic interactions, forming a dense network resembling \\\"armor\\\" on the surface. This simple one-step soaking strategy provides the alginate hydrogel with antibacterial and anti-swelling properties. Swelling tests demonstrated that the cross-sectional area of the fully swollen multifunctional alginate hydrogel was only 1.3 times its initial size, thus preventing excessive wound expansion caused by excessive swelling. After 5 hours of in vitro release, only 7% of TA was cumulatively released, indicating a distinctly slow-release behavior. Furthermore, as evidenced by the removal of 2,2-diphenyl-1-picrylhydrazyl free radicals, this integrated alginate hydrogel systems demonstrate a notable capacity to eliminate ROS. Full-thickness skin wound repair experiment and histological analysis of the healing site in mice demonstrate that the developed multifunctional alginate hydrogels have a prominent effect on extracellular matrix formation and promotion of wound closure. Overall, this study introduces a cost-effective and convenient multifunctional hydrogel dressing with high potential for clinical application in treating open wounds.\",\"PeriodicalId\":9016,\"journal\":{\"name\":\"Biomedical materials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605x/ad792c\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605x/ad792c","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A low-swelling alginate hydrogel with antibacterial hemostatic and radical scavenging properties for open wound healing.
Development of a low-cost and biocompatible hydrogel dressing with antimicrobial, antioxidant, and low swelling properties is important for accelerating wound healing. Here, a multifunctional alginate hydrogel dressing was fabricated using the D-(+)-gluconic acid δ-lactone/CaCO3 system. The addition of hyaluronic acid and tannic acid (TA) provides the alginate hydrogel with anti-reactive oxygen species (ROS), hemostatic, and pro-wound healing properties. Notably, soaking the alginate hydrogel in a poly-ε-lysine (EPL) aqueous solution enables the alginate hydrogel to be di-crosslinked with EPL through electrostatic interactions, forming a dense network resembling "armor" on the surface. This simple one-step soaking strategy provides the alginate hydrogel with antibacterial and anti-swelling properties. Swelling tests demonstrated that the cross-sectional area of the fully swollen multifunctional alginate hydrogel was only 1.3 times its initial size, thus preventing excessive wound expansion caused by excessive swelling. After 5 hours of in vitro release, only 7% of TA was cumulatively released, indicating a distinctly slow-release behavior. Furthermore, as evidenced by the removal of 2,2-diphenyl-1-picrylhydrazyl free radicals, this integrated alginate hydrogel systems demonstrate a notable capacity to eliminate ROS. Full-thickness skin wound repair experiment and histological analysis of the healing site in mice demonstrate that the developed multifunctional alginate hydrogels have a prominent effect on extracellular matrix formation and promotion of wound closure. Overall, this study introduces a cost-effective and convenient multifunctional hydrogel dressing with high potential for clinical application in treating open wounds.
期刊介绍:
The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare.
Typical areas of interest include (but are not limited to):
-Synthesis/characterization of biomedical materials-
Nature-inspired synthesis/biomineralization of biomedical materials-
In vitro/in vivo performance of biomedical materials-
Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning-
Microfluidic systems (including disease models): fabrication, testing & translational applications-
Tissue engineering/regenerative medicine-
Interaction of molecules/cells with materials-
Effects of biomaterials on stem cell behaviour-
Growth factors/genes/cells incorporated into biomedical materials-
Biophysical cues/biocompatibility pathways in biomedical materials performance-
Clinical applications of biomedical materials for cell therapies in disease (cancer etc)-
Nanomedicine, nanotoxicology and nanopathology-
Pharmacokinetic considerations in drug delivery systems-
Risks of contrast media in imaging systems-
Biosafety aspects of gene delivery agents-
Preclinical and clinical performance of implantable biomedical materials-
Translational and regulatory matters