{"title":"大型语言模型和自然语言处理在肺癌诊断中的应用前景:系统综述","authors":"Arushi Garg, Smridhi Gupta, Soumya Vats, Palak Handa, Nidhi Goel","doi":"10.1111/exsy.13697","DOIUrl":null,"url":null,"abstract":"<p>Lung cancer, a leading cause of global mortality, demands a combat for its effective prevention, early diagnosis, and advanced treatment methods. Traditional diagnostic methods face limitations in accuracy and efficiency, necessitating innovative solutions. Large Language Models (LLMs) and Natural Language Processing (NLP) offer promising avenues for overcoming these challenges by providing comprehensive insights into medical data and personalizing treatment plans. This systematic review explores the transformative potential of LLMs and NLP in automating lung cancer diagnosis. It evaluates their applications, particularly in medical imaging and the interpretation of complex medical data, and assesses achievements and associated challenges. Emphasizing the critical role of Artificial Intelligence (AI) in medical imaging, the review highlights advancements in lung cancer screening and deep learning approaches. Furthermore, it underscores the importance of on-going advancements in diagnostic methods and encourages further exploration in this field.</p>","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"41 11","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prospect of large language models and natural language processing for lung cancer diagnosis: A systematic review\",\"authors\":\"Arushi Garg, Smridhi Gupta, Soumya Vats, Palak Handa, Nidhi Goel\",\"doi\":\"10.1111/exsy.13697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lung cancer, a leading cause of global mortality, demands a combat for its effective prevention, early diagnosis, and advanced treatment methods. Traditional diagnostic methods face limitations in accuracy and efficiency, necessitating innovative solutions. Large Language Models (LLMs) and Natural Language Processing (NLP) offer promising avenues for overcoming these challenges by providing comprehensive insights into medical data and personalizing treatment plans. This systematic review explores the transformative potential of LLMs and NLP in automating lung cancer diagnosis. It evaluates their applications, particularly in medical imaging and the interpretation of complex medical data, and assesses achievements and associated challenges. Emphasizing the critical role of Artificial Intelligence (AI) in medical imaging, the review highlights advancements in lung cancer screening and deep learning approaches. Furthermore, it underscores the importance of on-going advancements in diagnostic methods and encourages further exploration in this field.</p>\",\"PeriodicalId\":51053,\"journal\":{\"name\":\"Expert Systems\",\"volume\":\"41 11\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/exsy.13697\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/exsy.13697","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Prospect of large language models and natural language processing for lung cancer diagnosis: A systematic review
Lung cancer, a leading cause of global mortality, demands a combat for its effective prevention, early diagnosis, and advanced treatment methods. Traditional diagnostic methods face limitations in accuracy and efficiency, necessitating innovative solutions. Large Language Models (LLMs) and Natural Language Processing (NLP) offer promising avenues for overcoming these challenges by providing comprehensive insights into medical data and personalizing treatment plans. This systematic review explores the transformative potential of LLMs and NLP in automating lung cancer diagnosis. It evaluates their applications, particularly in medical imaging and the interpretation of complex medical data, and assesses achievements and associated challenges. Emphasizing the critical role of Artificial Intelligence (AI) in medical imaging, the review highlights advancements in lung cancer screening and deep learning approaches. Furthermore, it underscores the importance of on-going advancements in diagnostic methods and encourages further exploration in this field.
期刊介绍:
Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper.
As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.