{"title":"ACRES:从数据集(半)自动生成具有不确定性的基于规则的专家系统的框架","authors":"Konstantinos Kovas, Ioannis Hatzilygeroudis","doi":"10.1111/exsy.13723","DOIUrl":null,"url":null,"abstract":"<p>Traditionally, the design of an expert system involves acquiring knowledge, in the form of symbolic rules, directly from the expert(s), which is a complex and time-consuming task. Although expert systems approach is quite old, it is still present, especially where explicit knowledge representation and reasoning, which assure interpretability and explainability, are necessary. Therefore, machine learning methods have been devised to extract rules from data, to facilitate that task. However, those methods are quite inflexible in adapting to the application domain and provide no help in designing the expert system. In this work, we present a framework and corresponding tool, namely ACRES, for semi-automatically generating expert systems from datasets. ACRES allows for data preprocessing, which helps in structuring knowledge in the form of a tree, called rule hierarchy, which represents (possible) dependencies among data variables and is used for rule formation. This improves interpretability and explainability of the produced systems. We have also designed and evaluated alternative methods for rule extraction from data and for calculation and use of certainty factors, to represent uncertainty; CFs can be dynamically updated. Experimental results on seven well-known datasets show that the proposed rule extraction methods are comparable to other popular machine learning approaches like decision trees, CART, JRip, PART, Random Forest, and so on, for the classification task. Finally, we give insights on two applications of ACRES.</p>","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"41 12","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/exsy.13723","citationCount":"0","resultStr":"{\"title\":\"ACRES: A framework for (semi)automatic generation of rule-based expert systems with uncertainty from datasets\",\"authors\":\"Konstantinos Kovas, Ioannis Hatzilygeroudis\",\"doi\":\"10.1111/exsy.13723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Traditionally, the design of an expert system involves acquiring knowledge, in the form of symbolic rules, directly from the expert(s), which is a complex and time-consuming task. Although expert systems approach is quite old, it is still present, especially where explicit knowledge representation and reasoning, which assure interpretability and explainability, are necessary. Therefore, machine learning methods have been devised to extract rules from data, to facilitate that task. However, those methods are quite inflexible in adapting to the application domain and provide no help in designing the expert system. In this work, we present a framework and corresponding tool, namely ACRES, for semi-automatically generating expert systems from datasets. ACRES allows for data preprocessing, which helps in structuring knowledge in the form of a tree, called rule hierarchy, which represents (possible) dependencies among data variables and is used for rule formation. This improves interpretability and explainability of the produced systems. We have also designed and evaluated alternative methods for rule extraction from data and for calculation and use of certainty factors, to represent uncertainty; CFs can be dynamically updated. Experimental results on seven well-known datasets show that the proposed rule extraction methods are comparable to other popular machine learning approaches like decision trees, CART, JRip, PART, Random Forest, and so on, for the classification task. Finally, we give insights on two applications of ACRES.</p>\",\"PeriodicalId\":51053,\"journal\":{\"name\":\"Expert Systems\",\"volume\":\"41 12\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/exsy.13723\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/exsy.13723\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/exsy.13723","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
ACRES: A framework for (semi)automatic generation of rule-based expert systems with uncertainty from datasets
Traditionally, the design of an expert system involves acquiring knowledge, in the form of symbolic rules, directly from the expert(s), which is a complex and time-consuming task. Although expert systems approach is quite old, it is still present, especially where explicit knowledge representation and reasoning, which assure interpretability and explainability, are necessary. Therefore, machine learning methods have been devised to extract rules from data, to facilitate that task. However, those methods are quite inflexible in adapting to the application domain and provide no help in designing the expert system. In this work, we present a framework and corresponding tool, namely ACRES, for semi-automatically generating expert systems from datasets. ACRES allows for data preprocessing, which helps in structuring knowledge in the form of a tree, called rule hierarchy, which represents (possible) dependencies among data variables and is used for rule formation. This improves interpretability and explainability of the produced systems. We have also designed and evaluated alternative methods for rule extraction from data and for calculation and use of certainty factors, to represent uncertainty; CFs can be dynamically updated. Experimental results on seven well-known datasets show that the proposed rule extraction methods are comparable to other popular machine learning approaches like decision trees, CART, JRip, PART, Random Forest, and so on, for the classification task. Finally, we give insights on two applications of ACRES.
期刊介绍:
Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper.
As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.