{"title":"用于野外复合面部表情识别的标签分布学习:比较研究","authors":"Afifa Khelifa, Haythem Ghazouani, Walid Barhoumi","doi":"10.1111/exsy.13724","DOIUrl":null,"url":null,"abstract":"Human emotional states encompass both basic and compound facial expressions. However, current works primarily focus on basic expressions, consequently neglecting the broad spectrum of human emotions encountered in practical scenarios. Compound facial expressions involve the simultaneous manifestation of multiple emotions on an individual's face. This phenomenon reflects the complexity and richness of human states, where facial features dynamically convey a combination of feelings. This study embarks on a pioneering exploration of Compound Facial Expression Recognition (CFER), with a distinctive emphasis on leveraging the Label Distribution Learning (LDL) paradigm. This strategic application of LDL aims to address the ambiguity and complexity inherent in compound expressions, marking a significant departure from the dominant Single Label Learning (SLL) and Multi‐Label Learning (MLL) paradigms. Within this framework, we rigorously investigate the potential of LDL for a critical challenge in Facial Expression Recognition (FER): recognizing compound facial expressions in uncontrolled environments. We utilize the recently introduced RAF‐CE dataset, meticulously designed for compound expression assessment. By conducting a comprehensive comparative analysis pitting LDL against conventional SLL and MLL approaches on RAF‐CE, we aim to definitively establish LDL's superiority in handling this complex task. Furthermore, we assess the generalizability of LDL models trained on RAF‐CE by evaluating their performance on the EmotioNet and RAF‐DB Compound datasets. This demonstrates their effectiveness without domain adaptation. To solidify these findings, we conduct a comprehensive comparative analysis of 12 cutting‐edge LDL algorithms on RAF‐CE, S‐BU3DFE, and S‐JAFFE datasets, providing valuable insights into the most effective LDL techniques for FER in‐the‐wild.","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Label distribution learning for compound facial expression recognition in‐the‐wild: A comparative study\",\"authors\":\"Afifa Khelifa, Haythem Ghazouani, Walid Barhoumi\",\"doi\":\"10.1111/exsy.13724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human emotional states encompass both basic and compound facial expressions. However, current works primarily focus on basic expressions, consequently neglecting the broad spectrum of human emotions encountered in practical scenarios. Compound facial expressions involve the simultaneous manifestation of multiple emotions on an individual's face. This phenomenon reflects the complexity and richness of human states, where facial features dynamically convey a combination of feelings. This study embarks on a pioneering exploration of Compound Facial Expression Recognition (CFER), with a distinctive emphasis on leveraging the Label Distribution Learning (LDL) paradigm. This strategic application of LDL aims to address the ambiguity and complexity inherent in compound expressions, marking a significant departure from the dominant Single Label Learning (SLL) and Multi‐Label Learning (MLL) paradigms. Within this framework, we rigorously investigate the potential of LDL for a critical challenge in Facial Expression Recognition (FER): recognizing compound facial expressions in uncontrolled environments. We utilize the recently introduced RAF‐CE dataset, meticulously designed for compound expression assessment. By conducting a comprehensive comparative analysis pitting LDL against conventional SLL and MLL approaches on RAF‐CE, we aim to definitively establish LDL's superiority in handling this complex task. Furthermore, we assess the generalizability of LDL models trained on RAF‐CE by evaluating their performance on the EmotioNet and RAF‐DB Compound datasets. This demonstrates their effectiveness without domain adaptation. To solidify these findings, we conduct a comprehensive comparative analysis of 12 cutting‐edge LDL algorithms on RAF‐CE, S‐BU3DFE, and S‐JAFFE datasets, providing valuable insights into the most effective LDL techniques for FER in‐the‐wild.\",\"PeriodicalId\":51053,\"journal\":{\"name\":\"Expert Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1111/exsy.13724\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1111/exsy.13724","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Label distribution learning for compound facial expression recognition in‐the‐wild: A comparative study
Human emotional states encompass both basic and compound facial expressions. However, current works primarily focus on basic expressions, consequently neglecting the broad spectrum of human emotions encountered in practical scenarios. Compound facial expressions involve the simultaneous manifestation of multiple emotions on an individual's face. This phenomenon reflects the complexity and richness of human states, where facial features dynamically convey a combination of feelings. This study embarks on a pioneering exploration of Compound Facial Expression Recognition (CFER), with a distinctive emphasis on leveraging the Label Distribution Learning (LDL) paradigm. This strategic application of LDL aims to address the ambiguity and complexity inherent in compound expressions, marking a significant departure from the dominant Single Label Learning (SLL) and Multi‐Label Learning (MLL) paradigms. Within this framework, we rigorously investigate the potential of LDL for a critical challenge in Facial Expression Recognition (FER): recognizing compound facial expressions in uncontrolled environments. We utilize the recently introduced RAF‐CE dataset, meticulously designed for compound expression assessment. By conducting a comprehensive comparative analysis pitting LDL against conventional SLL and MLL approaches on RAF‐CE, we aim to definitively establish LDL's superiority in handling this complex task. Furthermore, we assess the generalizability of LDL models trained on RAF‐CE by evaluating their performance on the EmotioNet and RAF‐DB Compound datasets. This demonstrates their effectiveness without domain adaptation. To solidify these findings, we conduct a comprehensive comparative analysis of 12 cutting‐edge LDL algorithms on RAF‐CE, S‐BU3DFE, and S‐JAFFE datasets, providing valuable insights into the most effective LDL techniques for FER in‐the‐wild.
期刊介绍:
Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper.
As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.