乒乓球运动员的感知信息处理:基于自上而下的分层预测编码

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES
Ziyi Peng, Lin Xu, Jie Lian, Xin An, Shufang Chen, Yongcong Shao, Fubing Jiao, Jing Lv
{"title":"乒乓球运动员的感知信息处理:基于自上而下的分层预测编码","authors":"Ziyi Peng, Lin Xu, Jie Lian, Xin An, Shufang Chen, Yongcong Shao, Fubing Jiao, Jing Lv","doi":"10.1007/s11571-024-10171-4","DOIUrl":null,"url":null,"abstract":"<p>Long-term training induces neural plasticity in the visual cognitive processing cortex of table tennis athletes, who perform cognitive processing in a resource-conserving manner. However, further discussion is needed to determine whether the spatial processing advantage of table tennis players manifests in the early stage of sensory input or the late stage of processing. This study aims to explore the processing styles and neural activity characteristics of table tennis players during spatial cognitive processing. Spatial cognitive tasks were completed by 28 college students and 20 s-level table tennis players, and event-related potentials (ERP) data were recorded during the task. The behavioral results showed that the table tennis group performed better on the task than the college students group (control). The ERP results showed that the amplitude of the N1 component of the table tennis group was significantly lower than that of the control group. The amplitude of the P2 and P3 components of the table tennis group was higher than that of the control group. Table tennis players showed significant synergistic activity between electrodes in the β-band. The results of this study suggest that table tennis players significantly deploy attentional resources and cognitive control. Further, they employ stored motor experience to process spatial information in a hierarchical predictive coding manner.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"1 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perceptual information processing in table tennis players: based on top-down hierarchical predictive coding\",\"authors\":\"Ziyi Peng, Lin Xu, Jie Lian, Xin An, Shufang Chen, Yongcong Shao, Fubing Jiao, Jing Lv\",\"doi\":\"10.1007/s11571-024-10171-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Long-term training induces neural plasticity in the visual cognitive processing cortex of table tennis athletes, who perform cognitive processing in a resource-conserving manner. However, further discussion is needed to determine whether the spatial processing advantage of table tennis players manifests in the early stage of sensory input or the late stage of processing. This study aims to explore the processing styles and neural activity characteristics of table tennis players during spatial cognitive processing. Spatial cognitive tasks were completed by 28 college students and 20 s-level table tennis players, and event-related potentials (ERP) data were recorded during the task. The behavioral results showed that the table tennis group performed better on the task than the college students group (control). The ERP results showed that the amplitude of the N1 component of the table tennis group was significantly lower than that of the control group. The amplitude of the P2 and P3 components of the table tennis group was higher than that of the control group. Table tennis players showed significant synergistic activity between electrodes in the β-band. The results of this study suggest that table tennis players significantly deploy attentional resources and cognitive control. Further, they employ stored motor experience to process spatial information in a hierarchical predictive coding manner.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-024-10171-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10171-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

长期训练可诱导乒乓球运动员视觉认知加工皮层的神经可塑性,他们以资源节约型方式进行认知加工。然而,乒乓球运动员的空间加工优势是体现在感觉输入的早期阶段还是加工的晚期阶段,还需要进一步探讨。本研究旨在探讨乒乓球运动员在空间认知加工过程中的加工方式和神经活动特征。28名大学生和20名s级乒乓球运动员完成了空间认知任务,并记录了任务过程中的事件相关电位(ERP)数据。行为结果显示,乒乓球运动员组在任务中的表现优于大学生组(对照组)。ERP结果显示,乒乓球组 N1成分的振幅明显低于对照组。乒乓球组 P2 和 P3 分量的振幅高于对照组。乒乓球运动员在 β 波段的电极间表现出明显的协同活动。本研究的结果表明,乒乓球运动员能显著调配注意力资源和认知控制。此外,他们还利用存储的运动经验,以分层预测编码的方式处理空间信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Perceptual information processing in table tennis players: based on top-down hierarchical predictive coding

Perceptual information processing in table tennis players: based on top-down hierarchical predictive coding

Long-term training induces neural plasticity in the visual cognitive processing cortex of table tennis athletes, who perform cognitive processing in a resource-conserving manner. However, further discussion is needed to determine whether the spatial processing advantage of table tennis players manifests in the early stage of sensory input or the late stage of processing. This study aims to explore the processing styles and neural activity characteristics of table tennis players during spatial cognitive processing. Spatial cognitive tasks were completed by 28 college students and 20 s-level table tennis players, and event-related potentials (ERP) data were recorded during the task. The behavioral results showed that the table tennis group performed better on the task than the college students group (control). The ERP results showed that the amplitude of the N1 component of the table tennis group was significantly lower than that of the control group. The amplitude of the P2 and P3 components of the table tennis group was higher than that of the control group. Table tennis players showed significant synergistic activity between electrodes in the β-band. The results of this study suggest that table tennis players significantly deploy attentional resources and cognitive control. Further, they employ stored motor experience to process spatial information in a hierarchical predictive coding manner.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信