数据转换导致气候环境控制改变,降低了土壤碳分解率的可预测性

IF 2.4 3区 农林科学 Q2 SOIL SCIENCE
Daifeng Xiang, Gangsheng Wang, Zehao Lv, Wanyu Li, Jing Tian
{"title":"数据转换导致气候环境控制改变,降低了土壤碳分解率的可预测性","authors":"Daifeng Xiang, Gangsheng Wang, Zehao Lv, Wanyu Li, Jing Tian","doi":"10.1002/saj2.20759","DOIUrl":null,"url":null,"abstract":"Data transformation of the reference soil organic matter (SOM) decomposition rates (<jats:italic>k</jats:italic><jats:sub>ref</jats:sub>), often derived as turnover times or in alternative formats, is commonly used to develop ecological models for projecting the persistence of SOM. However, the effects of reciprocal or logarithmic transformation of <jats:italic>k</jats:italic><jats:sub>ref</jats:sub> on model performance and edaphic‐climatic patterns remain uncertain. Here, we convert published <jats:italic>k</jats:italic><jats:sub>ref</jats:sub> values into reciprocal or logarithmic formats and establish machine learning models between the transformed <jats:italic>k</jats:italic><jats:sub>ref</jats:sub> and edaphic‐climatic predictors. We show that models trained with the transformed <jats:italic>k</jats:italic><jats:sub>ref</jats:sub> exhibit a 11.6%−68.4% reduction in performance upon re‐conversion to <jats:italic>k</jats:italic><jats:sub>ref</jats:sub> compared to those trained with the original <jats:italic>k</jats:italic><jats:sub>ref</jats:sub>. The variable importance analysis identifies distinct key predictors governing the original <jats:italic>k</jats:italic><jats:sub>ref</jats:sub> and its transformed counterparts. This suggests that data transformation alters the relative significance of predictors without necessarily improving <jats:italic>k</jats:italic><jats:sub>ref</jats:sub> prediction performance. Consequently, our study underscores the importance of directly focusing on the original values rather than alternative representations when dissecting a given variable's patterns and mechanisms in ecological modeling.","PeriodicalId":22142,"journal":{"name":"Soil Science Society of America Journal","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data transformations cause altered edaphic‐climatic controls and reduced predictability on soil carbon decomposition rates\",\"authors\":\"Daifeng Xiang, Gangsheng Wang, Zehao Lv, Wanyu Li, Jing Tian\",\"doi\":\"10.1002/saj2.20759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data transformation of the reference soil organic matter (SOM) decomposition rates (<jats:italic>k</jats:italic><jats:sub>ref</jats:sub>), often derived as turnover times or in alternative formats, is commonly used to develop ecological models for projecting the persistence of SOM. However, the effects of reciprocal or logarithmic transformation of <jats:italic>k</jats:italic><jats:sub>ref</jats:sub> on model performance and edaphic‐climatic patterns remain uncertain. Here, we convert published <jats:italic>k</jats:italic><jats:sub>ref</jats:sub> values into reciprocal or logarithmic formats and establish machine learning models between the transformed <jats:italic>k</jats:italic><jats:sub>ref</jats:sub> and edaphic‐climatic predictors. We show that models trained with the transformed <jats:italic>k</jats:italic><jats:sub>ref</jats:sub> exhibit a 11.6%−68.4% reduction in performance upon re‐conversion to <jats:italic>k</jats:italic><jats:sub>ref</jats:sub> compared to those trained with the original <jats:italic>k</jats:italic><jats:sub>ref</jats:sub>. The variable importance analysis identifies distinct key predictors governing the original <jats:italic>k</jats:italic><jats:sub>ref</jats:sub> and its transformed counterparts. This suggests that data transformation alters the relative significance of predictors without necessarily improving <jats:italic>k</jats:italic><jats:sub>ref</jats:sub> prediction performance. Consequently, our study underscores the importance of directly focusing on the original values rather than alternative representations when dissecting a given variable's patterns and mechanisms in ecological modeling.\",\"PeriodicalId\":22142,\"journal\":{\"name\":\"Soil Science Society of America Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Science Society of America Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1002/saj2.20759\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Science Society of America Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/saj2.20759","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

参考土壤有机质(SOM)分解率(kref)的数据转换通常以周转时间或其他形式得出,常用于开发预测 SOM 持久性的生态模型。然而,kref 的倒数或对数转换对模型性能和环境气候模式的影响仍不确定。在此,我们将已发表的 kref 值转换为倒数或对数格式,并在转换后的 kref 和环境气候预测因子之间建立机器学习模型。我们发现,与使用原始 kref 训练的模型相比,使用转换后的 kref 训练的模型在重新转换为 kref 后性能降低了 11.6%-68.4%。变量重要性分析确定了支配原始 kref 及其转换后对应物的不同关键预测因子。这表明,数据转换会改变预测因子的相对重要性,但不一定会提高 kref 预测性能。因此,我们的研究强调了在生态建模中剖析给定变量的模式和机制时,直接关注原始值而不是其他表征的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data transformations cause altered edaphic‐climatic controls and reduced predictability on soil carbon decomposition rates
Data transformation of the reference soil organic matter (SOM) decomposition rates (kref), often derived as turnover times or in alternative formats, is commonly used to develop ecological models for projecting the persistence of SOM. However, the effects of reciprocal or logarithmic transformation of kref on model performance and edaphic‐climatic patterns remain uncertain. Here, we convert published kref values into reciprocal or logarithmic formats and establish machine learning models between the transformed kref and edaphic‐climatic predictors. We show that models trained with the transformed kref exhibit a 11.6%−68.4% reduction in performance upon re‐conversion to kref compared to those trained with the original kref. The variable importance analysis identifies distinct key predictors governing the original kref and its transformed counterparts. This suggests that data transformation alters the relative significance of predictors without necessarily improving kref prediction performance. Consequently, our study underscores the importance of directly focusing on the original values rather than alternative representations when dissecting a given variable's patterns and mechanisms in ecological modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soil Science Society of America Journal
Soil Science Society of America Journal 农林科学-土壤科学
CiteScore
5.40
自引率
3.40%
发文量
130
审稿时长
3.6 months
期刊介绍: SSSA Journal publishes content on soil physics; hydrology; soil chemistry; soil biology; soil biochemistry; soil fertility; plant nutrition; pedology; soil and water conservation and management; forest, range, and wildland soils; soil and plant analysis; soil mineralogy, wetland soils. The audience is researchers, students, soil scientists, hydrologists, pedologist, geologists, agronomists, arborists, ecologists, engineers, certified practitioners, soil microbiologists, and environmentalists. The journal publishes original research, issue papers, reviews, notes, comments and letters to the editor, and book reviews. Invitational papers may be published in the journal if accepted by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信