{"title":"应用于建筑热能存储的相变材料(综述)","authors":"Md Ahsan Habib, Muhammad Mustafizur Rahman","doi":"10.1134/S0040601524700174","DOIUrl":null,"url":null,"abstract":"<p>A unique substance or material that releases or absorbs enough energy during a phase shift is known as a phase change material (PCM). Usually, one of the first two fundamental states of matter—solid or liquid—will change into the other. Phase change materials for thermal energy storage (TES) have excellent capability for providing thermal comfort in building’s occupant by decreasing heating and cooling energy demands. Because of its latent heat property, a PCM has a high energy density. The building uses PCMs mainly for space heating or cooling, control of building material temperature and increase in building durability, solar water heating, and waste heat recovery from high heat loss locations. Phase change materials for thermal energy storage has been proven to be useful for reducing peak electricity demand or increasing energy efficiency in heating, ventilation, and air-conditioning systems. The primary grid benefit of PCM based thermal energy storage system is load shifting and shedding, which is accomplished by recharging the storage system during off-peak times and substituting heating, ventilation, and air-conditioning system operation during peak times. This study examines PCM based thermal energy storage systems in building applications and benefits, focusing on their substantial limitations, and closes with recommendations for further improvement of design for use.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"71 8","pages":"649 - 663"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase Change Materials for Applications in Building Thermal Energy Storage (Review)\",\"authors\":\"Md Ahsan Habib, Muhammad Mustafizur Rahman\",\"doi\":\"10.1134/S0040601524700174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A unique substance or material that releases or absorbs enough energy during a phase shift is known as a phase change material (PCM). Usually, one of the first two fundamental states of matter—solid or liquid—will change into the other. Phase change materials for thermal energy storage (TES) have excellent capability for providing thermal comfort in building’s occupant by decreasing heating and cooling energy demands. Because of its latent heat property, a PCM has a high energy density. The building uses PCMs mainly for space heating or cooling, control of building material temperature and increase in building durability, solar water heating, and waste heat recovery from high heat loss locations. Phase change materials for thermal energy storage has been proven to be useful for reducing peak electricity demand or increasing energy efficiency in heating, ventilation, and air-conditioning systems. The primary grid benefit of PCM based thermal energy storage system is load shifting and shedding, which is accomplished by recharging the storage system during off-peak times and substituting heating, ventilation, and air-conditioning system operation during peak times. This study examines PCM based thermal energy storage systems in building applications and benefits, focusing on their substantial limitations, and closes with recommendations for further improvement of design for use.</p>\",\"PeriodicalId\":799,\"journal\":{\"name\":\"Thermal Engineering\",\"volume\":\"71 8\",\"pages\":\"649 - 663\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040601524700174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S0040601524700174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Phase Change Materials for Applications in Building Thermal Energy Storage (Review)
A unique substance or material that releases or absorbs enough energy during a phase shift is known as a phase change material (PCM). Usually, one of the first two fundamental states of matter—solid or liquid—will change into the other. Phase change materials for thermal energy storage (TES) have excellent capability for providing thermal comfort in building’s occupant by decreasing heating and cooling energy demands. Because of its latent heat property, a PCM has a high energy density. The building uses PCMs mainly for space heating or cooling, control of building material temperature and increase in building durability, solar water heating, and waste heat recovery from high heat loss locations. Phase change materials for thermal energy storage has been proven to be useful for reducing peak electricity demand or increasing energy efficiency in heating, ventilation, and air-conditioning systems. The primary grid benefit of PCM based thermal energy storage system is load shifting and shedding, which is accomplished by recharging the storage system during off-peak times and substituting heating, ventilation, and air-conditioning system operation during peak times. This study examines PCM based thermal energy storage systems in building applications and benefits, focusing on their substantial limitations, and closes with recommendations for further improvement of design for use.