大型数据集固定效应模型的贝叶斯估计*

IF 1.5 3区 经济学 Q2 ECONOMICS
Hang Qian
{"title":"大型数据集固定效应模型的贝叶斯估计*","authors":"Hang Qian","doi":"10.1111/obes.12641","DOIUrl":null,"url":null,"abstract":"In hierarchical prior longitudinal models, random effects are estimated by the Gibbs sampler. We show that fixed effects can be handled by a similar Gibbs sampler under a diffuse prior on the unobserved heterogeneity. The dummy variable approach for fixed effects is computationally intensive and has the out‐of‐memory risk, while the Gibbs sampler can reproduce the dummy variable estimator without creating dummy variables, and therefore avoids the memory burden. Compared to alternating projections and other classical approaches, our method simplifies both inference and estimation of the limited dependent variable models with fixed effects. The proposed method is applied to a real‐world mortgage dataset for classification with three‐way fixed effects on banks, regions, and loan purposes.","PeriodicalId":54654,"journal":{"name":"Oxford Bulletin of Economics and Statistics","volume":"16 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Estimation of Fixed Effects Models with Large Datasets*\",\"authors\":\"Hang Qian\",\"doi\":\"10.1111/obes.12641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In hierarchical prior longitudinal models, random effects are estimated by the Gibbs sampler. We show that fixed effects can be handled by a similar Gibbs sampler under a diffuse prior on the unobserved heterogeneity. The dummy variable approach for fixed effects is computationally intensive and has the out‐of‐memory risk, while the Gibbs sampler can reproduce the dummy variable estimator without creating dummy variables, and therefore avoids the memory burden. Compared to alternating projections and other classical approaches, our method simplifies both inference and estimation of the limited dependent variable models with fixed effects. The proposed method is applied to a real‐world mortgage dataset for classification with three‐way fixed effects on banks, regions, and loan purposes.\",\"PeriodicalId\":54654,\"journal\":{\"name\":\"Oxford Bulletin of Economics and Statistics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxford Bulletin of Economics and Statistics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1111/obes.12641\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford Bulletin of Economics and Statistics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1111/obes.12641","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

在分层先验纵向模型中,随机效应由吉布斯采样器估算。我们的研究表明,在未观察异质性的扩散先验条件下,固定效应也可以用类似的吉布斯采样器来处理。固定效应的虚拟变量方法计算量大,且有失忆风险,而吉布斯采样器可以在不创建虚拟变量的情况下重现虚拟变量估计,从而避免了失忆负担。与交替预测和其他经典方法相比,我们的方法简化了具有固定效应的有限因变量模型的推断和估计。我们将所提出的方法应用于现实世界的抵押贷款数据集,对银行、地区和贷款用途三方面的固定效应进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Estimation of Fixed Effects Models with Large Datasets*
In hierarchical prior longitudinal models, random effects are estimated by the Gibbs sampler. We show that fixed effects can be handled by a similar Gibbs sampler under a diffuse prior on the unobserved heterogeneity. The dummy variable approach for fixed effects is computationally intensive and has the out‐of‐memory risk, while the Gibbs sampler can reproduce the dummy variable estimator without creating dummy variables, and therefore avoids the memory burden. Compared to alternating projections and other classical approaches, our method simplifies both inference and estimation of the limited dependent variable models with fixed effects. The proposed method is applied to a real‐world mortgage dataset for classification with three‐way fixed effects on banks, regions, and loan purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Oxford Bulletin of Economics and Statistics
Oxford Bulletin of Economics and Statistics 管理科学-统计学与概率论
CiteScore
5.10
自引率
0.00%
发文量
54
审稿时长
>12 weeks
期刊介绍: Whilst the Oxford Bulletin of Economics and Statistics publishes papers in all areas of applied economics, emphasis is placed on the practical importance, theoretical interest and policy-relevance of their substantive results, as well as on the methodology and technical competence of the research. Contributions on the topical issues of economic policy and the testing of currently controversial economic theories are encouraged, as well as more empirical research on both developed and developing countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信