{"title":"大型数据集固定效应模型的贝叶斯估计*","authors":"Hang Qian","doi":"10.1111/obes.12641","DOIUrl":null,"url":null,"abstract":"In hierarchical prior longitudinal models, random effects are estimated by the Gibbs sampler. We show that fixed effects can be handled by a similar Gibbs sampler under a diffuse prior on the unobserved heterogeneity. The dummy variable approach for fixed effects is computationally intensive and has the out‐of‐memory risk, while the Gibbs sampler can reproduce the dummy variable estimator without creating dummy variables, and therefore avoids the memory burden. Compared to alternating projections and other classical approaches, our method simplifies both inference and estimation of the limited dependent variable models with fixed effects. The proposed method is applied to a real‐world mortgage dataset for classification with three‐way fixed effects on banks, regions, and loan purposes.","PeriodicalId":54654,"journal":{"name":"Oxford Bulletin of Economics and Statistics","volume":"16 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Estimation of Fixed Effects Models with Large Datasets*\",\"authors\":\"Hang Qian\",\"doi\":\"10.1111/obes.12641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In hierarchical prior longitudinal models, random effects are estimated by the Gibbs sampler. We show that fixed effects can be handled by a similar Gibbs sampler under a diffuse prior on the unobserved heterogeneity. The dummy variable approach for fixed effects is computationally intensive and has the out‐of‐memory risk, while the Gibbs sampler can reproduce the dummy variable estimator without creating dummy variables, and therefore avoids the memory burden. Compared to alternating projections and other classical approaches, our method simplifies both inference and estimation of the limited dependent variable models with fixed effects. The proposed method is applied to a real‐world mortgage dataset for classification with three‐way fixed effects on banks, regions, and loan purposes.\",\"PeriodicalId\":54654,\"journal\":{\"name\":\"Oxford Bulletin of Economics and Statistics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxford Bulletin of Economics and Statistics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1111/obes.12641\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford Bulletin of Economics and Statistics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1111/obes.12641","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
Bayesian Estimation of Fixed Effects Models with Large Datasets*
In hierarchical prior longitudinal models, random effects are estimated by the Gibbs sampler. We show that fixed effects can be handled by a similar Gibbs sampler under a diffuse prior on the unobserved heterogeneity. The dummy variable approach for fixed effects is computationally intensive and has the out‐of‐memory risk, while the Gibbs sampler can reproduce the dummy variable estimator without creating dummy variables, and therefore avoids the memory burden. Compared to alternating projections and other classical approaches, our method simplifies both inference and estimation of the limited dependent variable models with fixed effects. The proposed method is applied to a real‐world mortgage dataset for classification with three‐way fixed effects on banks, regions, and loan purposes.
期刊介绍:
Whilst the Oxford Bulletin of Economics and Statistics publishes papers in all areas of applied economics, emphasis is placed on the practical importance, theoretical interest and policy-relevance of their substantive results, as well as on the methodology and technical competence of the research.
Contributions on the topical issues of economic policy and the testing of currently controversial economic theories are encouraged, as well as more empirical research on both developed and developing countries.