拉昆序列平均数差的变异算子将 $$H_{w}^{1}(\mathbb{R})$$ 映射到 $$L_{w}^{1}(\mathbb{R})$$

IF 0.5 Q3 MATHEMATICS
S. Demir
{"title":"拉昆序列平均数差的变异算子将 $$H_{w}^{1}(\\mathbb{R})$$ 映射到 $$L_{w}^{1}(\\mathbb{R})$$","authors":"S. Demir","doi":"10.3103/s1066369x24700324","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Let <span>\\(f\\)</span> be a locally integrable function defined on <span>\\(\\mathbb{R}\\)</span>, and <span>\\(({{n}_{k}})\\)</span> be a lacunary sequence. Define\n<span>\\({{A}_{n}}f(x) = \\frac{1}{n}\\int_0^n f(x - t)dt,\\)</span>\nand let <span>\\({{\\mathcal{V}}_{\\rho }}f(x) = {{\\left( {\\sum\\limits_{k = 1}^\\infty {{{\\left| {{{A}_{{{{n}_{k}}}}}f(x) - {{A}_{{{{n}_{{k - 1}}}}}}f(x)} \\right|}}^{\\rho }}} \\right)}^{{1/\\rho }}}.\\)</span>\nSuppose that <span>\\(w \\in {{A}_{p}}\\)</span>, <span>\\(1 \\leqslant p &lt; \\infty \\)</span>, and <span>\\(\\rho \\geqslant 2\\)</span>. Then, there exists a positive constant <span>\\(C\\)</span> such that <span>\\({{\\left\\| {{{\\mathcal{V}}_{\\rho }}f} \\right\\|}_{{L_{w}^{1}}}} \\leqslant C{{\\left\\| f \\right\\|}_{{H_{w}^{1}}}}\\)</span>\nfor all <span>\\(f \\in H_{w}^{1}(\\mathbb{R})\\)</span>.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"6 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Variation Operator of Differences of Averages over Lacunary Sequences Maps $$H_{w}^{1}(\\\\mathbb{R})$$ to $$L_{w}^{1}(\\\\mathbb{R})$$\",\"authors\":\"S. Demir\",\"doi\":\"10.3103/s1066369x24700324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Let <span>\\\\(f\\\\)</span> be a locally integrable function defined on <span>\\\\(\\\\mathbb{R}\\\\)</span>, and <span>\\\\(({{n}_{k}})\\\\)</span> be a lacunary sequence. Define\\n<span>\\\\({{A}_{n}}f(x) = \\\\frac{1}{n}\\\\int_0^n f(x - t)dt,\\\\)</span>\\nand let <span>\\\\({{\\\\mathcal{V}}_{\\\\rho }}f(x) = {{\\\\left( {\\\\sum\\\\limits_{k = 1}^\\\\infty {{{\\\\left| {{{A}_{{{{n}_{k}}}}}f(x) - {{A}_{{{{n}_{{k - 1}}}}}}f(x)} \\\\right|}}^{\\\\rho }}} \\\\right)}^{{1/\\\\rho }}}.\\\\)</span>\\nSuppose that <span>\\\\(w \\\\in {{A}_{p}}\\\\)</span>, <span>\\\\(1 \\\\leqslant p &lt; \\\\infty \\\\)</span>, and <span>\\\\(\\\\rho \\\\geqslant 2\\\\)</span>. Then, there exists a positive constant <span>\\\\(C\\\\)</span> such that <span>\\\\({{\\\\left\\\\| {{{\\\\mathcal{V}}_{\\\\rho }}f} \\\\right\\\\|}_{{L_{w}^{1}}}} \\\\leqslant C{{\\\\left\\\\| f \\\\right\\\\|}_{{H_{w}^{1}}}}\\\\)</span>\\nfor all <span>\\\\(f \\\\in H_{w}^{1}(\\\\mathbb{R})\\\\)</span>.</p>\",\"PeriodicalId\":46110,\"journal\":{\"name\":\"Russian Mathematics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066369x24700324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x24700324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

AbstractLet \(f\) be a locally integrable function defined on \(\mathbb{R}\), and \(({{n}_{k}})\) be a lacunary sequence.定义({{A}_{n}}f(x) = \frac{1}{n}\int_0^n f(x - t)dt、\)并让\({{math\cal{V}}_{\rho }}f(x) = {{\left( {\sum\limits_{k = 1}^^\infty {{{left| {{A}_{{{{n}_{k}}}}}f(x) - {{A}_{{{{n}_{k - 1}}}}}}f(x)} \right|}}^{\rho }}}\right)}^{{1/\rho }}}.\)Suppose that \(w \in {{A}_{p}}\),\(1 \leqslant p < \infty \), and\(\rho \geqslant 2\).然后,存在一个正常数(C),使得 \({{\left\| {{{\mathcal{V}}_{\rho }}f}\right\|}_{{L_{w}^{1}}}}\leqslant C{{left\| f \right\|}_{{H_{w}^{1}}}}\)for all \(f \in H_{w}^{1}(\mathbb{R})\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Variation Operator of Differences of Averages over Lacunary Sequences Maps $$H_{w}^{1}(\mathbb{R})$$ to $$L_{w}^{1}(\mathbb{R})$$

Abstract

Let \(f\) be a locally integrable function defined on \(\mathbb{R}\), and \(({{n}_{k}})\) be a lacunary sequence. Define \({{A}_{n}}f(x) = \frac{1}{n}\int_0^n f(x - t)dt,\) and let \({{\mathcal{V}}_{\rho }}f(x) = {{\left( {\sum\limits_{k = 1}^\infty {{{\left| {{{A}_{{{{n}_{k}}}}}f(x) - {{A}_{{{{n}_{{k - 1}}}}}}f(x)} \right|}}^{\rho }}} \right)}^{{1/\rho }}}.\) Suppose that \(w \in {{A}_{p}}\), \(1 \leqslant p < \infty \), and \(\rho \geqslant 2\). Then, there exists a positive constant \(C\) such that \({{\left\| {{{\mathcal{V}}_{\rho }}f} \right\|}_{{L_{w}^{1}}}} \leqslant C{{\left\| f \right\|}_{{H_{w}^{1}}}}\) for all \(f \in H_{w}^{1}(\mathbb{R})\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信