{"title":"拉昆序列平均数差的变异算子将 $$H_{w}^{1}(\\mathbb{R})$$ 映射到 $$L_{w}^{1}(\\mathbb{R})$$","authors":"S. Demir","doi":"10.3103/s1066369x24700324","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Let <span>\\(f\\)</span> be a locally integrable function defined on <span>\\(\\mathbb{R}\\)</span>, and <span>\\(({{n}_{k}})\\)</span> be a lacunary sequence. Define\n<span>\\({{A}_{n}}f(x) = \\frac{1}{n}\\int_0^n f(x - t)dt,\\)</span>\nand let <span>\\({{\\mathcal{V}}_{\\rho }}f(x) = {{\\left( {\\sum\\limits_{k = 1}^\\infty {{{\\left| {{{A}_{{{{n}_{k}}}}}f(x) - {{A}_{{{{n}_{{k - 1}}}}}}f(x)} \\right|}}^{\\rho }}} \\right)}^{{1/\\rho }}}.\\)</span>\nSuppose that <span>\\(w \\in {{A}_{p}}\\)</span>, <span>\\(1 \\leqslant p < \\infty \\)</span>, and <span>\\(\\rho \\geqslant 2\\)</span>. Then, there exists a positive constant <span>\\(C\\)</span> such that <span>\\({{\\left\\| {{{\\mathcal{V}}_{\\rho }}f} \\right\\|}_{{L_{w}^{1}}}} \\leqslant C{{\\left\\| f \\right\\|}_{{H_{w}^{1}}}}\\)</span>\nfor all <span>\\(f \\in H_{w}^{1}(\\mathbb{R})\\)</span>.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"6 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Variation Operator of Differences of Averages over Lacunary Sequences Maps $$H_{w}^{1}(\\\\mathbb{R})$$ to $$L_{w}^{1}(\\\\mathbb{R})$$\",\"authors\":\"S. Demir\",\"doi\":\"10.3103/s1066369x24700324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Let <span>\\\\(f\\\\)</span> be a locally integrable function defined on <span>\\\\(\\\\mathbb{R}\\\\)</span>, and <span>\\\\(({{n}_{k}})\\\\)</span> be a lacunary sequence. Define\\n<span>\\\\({{A}_{n}}f(x) = \\\\frac{1}{n}\\\\int_0^n f(x - t)dt,\\\\)</span>\\nand let <span>\\\\({{\\\\mathcal{V}}_{\\\\rho }}f(x) = {{\\\\left( {\\\\sum\\\\limits_{k = 1}^\\\\infty {{{\\\\left| {{{A}_{{{{n}_{k}}}}}f(x) - {{A}_{{{{n}_{{k - 1}}}}}}f(x)} \\\\right|}}^{\\\\rho }}} \\\\right)}^{{1/\\\\rho }}}.\\\\)</span>\\nSuppose that <span>\\\\(w \\\\in {{A}_{p}}\\\\)</span>, <span>\\\\(1 \\\\leqslant p < \\\\infty \\\\)</span>, and <span>\\\\(\\\\rho \\\\geqslant 2\\\\)</span>. Then, there exists a positive constant <span>\\\\(C\\\\)</span> such that <span>\\\\({{\\\\left\\\\| {{{\\\\mathcal{V}}_{\\\\rho }}f} \\\\right\\\\|}_{{L_{w}^{1}}}} \\\\leqslant C{{\\\\left\\\\| f \\\\right\\\\|}_{{H_{w}^{1}}}}\\\\)</span>\\nfor all <span>\\\\(f \\\\in H_{w}^{1}(\\\\mathbb{R})\\\\)</span>.</p>\",\"PeriodicalId\":46110,\"journal\":{\"name\":\"Russian Mathematics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066369x24700324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x24700324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
AbstractLet \(f\) be a locally integrable function defined on \(\mathbb{R}\), and \(({{n}_{k}})\) be a lacunary sequence.定义({{A}_{n}}f(x) = \frac{1}{n}\int_0^n f(x - t)dt、\)并让\({{math\cal{V}}_{\rho }}f(x) = {{\left( {\sum\limits_{k = 1}^^\infty {{{left| {{A}_{{{{n}_{k}}}}}f(x) - {{A}_{{{{n}_{k - 1}}}}}}f(x)} \right|}}^{\rho }}}\right)}^{{1/\rho }}}.\)Suppose that \(w \in {{A}_{p}}\),\(1 \leqslant p < \infty \), and\(\rho \geqslant 2\).然后,存在一个正常数(C),使得 \({{\left\| {{{\mathcal{V}}_{\rho }}f}\right\|}_{{L_{w}^{1}}}}\leqslant C{{left\| f \right\|}_{{H_{w}^{1}}}}\)for all \(f \in H_{w}^{1}(\mathbb{R})\).
The Variation Operator of Differences of Averages over Lacunary Sequences Maps $$H_{w}^{1}(\mathbb{R})$$ to $$L_{w}^{1}(\mathbb{R})$$
Abstract
Let \(f\) be a locally integrable function defined on \(\mathbb{R}\), and \(({{n}_{k}})\) be a lacunary sequence. Define
\({{A}_{n}}f(x) = \frac{1}{n}\int_0^n f(x - t)dt,\)
and let \({{\mathcal{V}}_{\rho }}f(x) = {{\left( {\sum\limits_{k = 1}^\infty {{{\left| {{{A}_{{{{n}_{k}}}}}f(x) - {{A}_{{{{n}_{{k - 1}}}}}}f(x)} \right|}}^{\rho }}} \right)}^{{1/\rho }}}.\)
Suppose that \(w \in {{A}_{p}}\), \(1 \leqslant p < \infty \), and \(\rho \geqslant 2\). Then, there exists a positive constant \(C\) such that \({{\left\| {{{\mathcal{V}}_{\rho }}f} \right\|}_{{L_{w}^{1}}}} \leqslant C{{\left\| f \right\|}_{{H_{w}^{1}}}}\)
for all \(f \in H_{w}^{1}(\mathbb{R})\).