带自动形态的布尔线性三维网

IF 0.5 Q3 MATHEMATICS
A. M. Shelekhov
{"title":"带自动形态的布尔线性三维网","authors":"A. M. Shelekhov","doi":"10.3103/s1066369x24700464","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A general form of the equation of a curvilinear three-web admitting a one-parameter family of automorphisms (<span>\\(AW\\)</span>-webs) is found. It is proved that the trajectories of automorphisms of an <span>\\(AW\\)</span>-web are geodesics of its Chern connection. All <span>\\(AW\\)</span>-webs are found for which one of the covariant derivatives of curvature is zero.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"2 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Сurvilinear Three-Webs with Automorphisms\",\"authors\":\"A. M. Shelekhov\",\"doi\":\"10.3103/s1066369x24700464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>A general form of the equation of a curvilinear three-web admitting a one-parameter family of automorphisms (<span>\\\\(AW\\\\)</span>-webs) is found. It is proved that the trajectories of automorphisms of an <span>\\\\(AW\\\\)</span>-web are geodesics of its Chern connection. All <span>\\\\(AW\\\\)</span>-webs are found for which one of the covariant derivatives of curvature is zero.</p>\",\"PeriodicalId\":46110,\"journal\":{\"name\":\"Russian Mathematics\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066369x24700464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x24700464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 发现了曲线三维网方程的一般形式,该曲线三维网容许一个参数族的自动形(\(AW\)-web)。证明了 \(AW\)-web 的自形体的轨迹是其 Chern connection 的大地线。找到了所有曲率的一个协变导数为零的网(\(AW\)-web)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Сurvilinear Three-Webs with Automorphisms

Abstract

A general form of the equation of a curvilinear three-web admitting a one-parameter family of automorphisms (\(AW\)-webs) is found. It is proved that the trajectories of automorphisms of an \(AW\)-web are geodesics of its Chern connection. All \(AW\)-webs are found for which one of the covariant derivatives of curvature is zero.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信