洛特卡-伏特拉混合系统解的终极边界性和永久性条件

IF 0.5 Q3 MATHEMATICS
A. V. Platonov
{"title":"洛特卡-伏特拉混合系统解的终极边界性和永久性条件","authors":"A. V. Platonov","doi":"10.3103/s1066369x24700440","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In the paper, a generalized Lotka–Volterra-type system with switching is considered. The conditions for the ultimate boundedness of solutions and the permanence of the system are studied. With the aid of the direct Lyapunov method, the requirements for the switching law are established to guarantee the necessary dynamics of the system. An attractive compact invariant set is constructed in the phase space of the system, and a given region of attraction for this set is provided. A distinctive feature of the work is the use of a combination of two different Lyapunov functions, each of which plays its own special role in solving the problem.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"147 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conditions for Ultimate Boundedness of Solutions and Permanence for a Hybrid Lotka–Volterra System\",\"authors\":\"A. V. Platonov\",\"doi\":\"10.3103/s1066369x24700440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>In the paper, a generalized Lotka–Volterra-type system with switching is considered. The conditions for the ultimate boundedness of solutions and the permanence of the system are studied. With the aid of the direct Lyapunov method, the requirements for the switching law are established to guarantee the necessary dynamics of the system. An attractive compact invariant set is constructed in the phase space of the system, and a given region of attraction for this set is provided. A distinctive feature of the work is the use of a combination of two different Lyapunov functions, each of which plays its own special role in solving the problem.</p>\",\"PeriodicalId\":46110,\"journal\":{\"name\":\"Russian Mathematics\",\"volume\":\"147 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066369x24700440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x24700440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文考虑了一个带开关的广义 Lotka-Volterra 型系统。研究了解的最终有界性和系统持久性的条件。借助直接李雅普诺夫方法,建立了对切换规律的要求,以保证系统的必要动态性。在系统的相空间中构建了一个有吸引力的紧凑不变集,并为这个集提供了一个给定的吸引力区域。这项工作的一个显著特点是使用了两种不同的 Lyapunov 函数组合,每种函数在解决问题时都发挥着各自的特殊作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conditions for Ultimate Boundedness of Solutions and Permanence for a Hybrid Lotka–Volterra System

Abstract

In the paper, a generalized Lotka–Volterra-type system with switching is considered. The conditions for the ultimate boundedness of solutions and the permanence of the system are studied. With the aid of the direct Lyapunov method, the requirements for the switching law are established to guarantee the necessary dynamics of the system. An attractive compact invariant set is constructed in the phase space of the system, and a given region of attraction for this set is provided. A distinctive feature of the work is the use of a combination of two different Lyapunov functions, each of which plays its own special role in solving the problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信