带分离变量的次谐函数及其与广义凸函数的联系

IF 0.5 Q3 MATHEMATICS
R. R. Muryasov
{"title":"带分离变量的次谐函数及其与广义凸函数的联系","authors":"R. R. Muryasov","doi":"10.3103/s1066369x24700439","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper, we consider the necessary and sufficient conditions for the subharmonicity of functions of two variables representable as a product of two functions of one variable in the Cartesian coordinate system or in the polar coordinate system in domains on the plane. We establish a connection of such functions with functions that are convex with respect to solutions of second-order linear differential equations, that is, convex with respect to two functions.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"6 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subharmonic Functions with Separated Variables and Their Connection with Generalized Convex Functions\",\"authors\":\"R. R. Muryasov\",\"doi\":\"10.3103/s1066369x24700439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>In this paper, we consider the necessary and sufficient conditions for the subharmonicity of functions of two variables representable as a product of two functions of one variable in the Cartesian coordinate system or in the polar coordinate system in domains on the plane. We establish a connection of such functions with functions that are convex with respect to solutions of second-order linear differential equations, that is, convex with respect to two functions.</p>\",\"PeriodicalId\":46110,\"journal\":{\"name\":\"Russian Mathematics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066369x24700439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x24700439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在本文中,我们考虑了在直角坐标系或极坐标系中平面域内可表示为两个一变量函数乘积的二变量函数的次谐波性的必要和充分条件。我们将这些函数与二阶线性微分方程解的凸函数(即两个函数的凸函数)联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subharmonic Functions with Separated Variables and Their Connection with Generalized Convex Functions

Abstract

In this paper, we consider the necessary and sufficient conditions for the subharmonicity of functions of two variables representable as a product of two functions of one variable in the Cartesian coordinate system or in the polar coordinate system in domains on the plane. We establish a connection of such functions with functions that are convex with respect to solutions of second-order linear differential equations, that is, convex with respect to two functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信