{"title":"具有奇异系数的盖勒斯特方程的弗兰克尔和混合条件的类似问题","authors":"D. M. Mirsaburova","doi":"10.3103/s1066369x24700427","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>For the equation <span>\\((\\operatorname{sgn} y){{\\left| y \\right|}^{m}}{{u}_{{xx}}} + {{u}_{{yy}}} + {{\\alpha }_{0}}{{\\left| y \\right|}^{{(m - 2)/2}}}{{u}_{x}} + ({{\\beta }_{0}}{\\text{/}}y){{u}_{y}} = 0,\\)</span> considered in some unbounded mixed domain, uniqueness and existence theorems are proved for a solution to the problem with the missing shift condition on the boundary characteristics and an analogue of the Frankl-type condition on the interval of degeneracy of the equation.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"57 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Problem with Analogue of the Frankl and Mixing Conditions for the Gellerstedt Equation with Singular Coefficient\",\"authors\":\"D. M. Mirsaburova\",\"doi\":\"10.3103/s1066369x24700427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>For the equation <span>\\\\((\\\\operatorname{sgn} y){{\\\\left| y \\\\right|}^{m}}{{u}_{{xx}}} + {{u}_{{yy}}} + {{\\\\alpha }_{0}}{{\\\\left| y \\\\right|}^{{(m - 2)/2}}}{{u}_{x}} + ({{\\\\beta }_{0}}{\\\\text{/}}y){{u}_{y}} = 0,\\\\)</span> considered in some unbounded mixed domain, uniqueness and existence theorems are proved for a solution to the problem with the missing shift condition on the boundary characteristics and an analogue of the Frankl-type condition on the interval of degeneracy of the equation.</p>\",\"PeriodicalId\":46110,\"journal\":{\"name\":\"Russian Mathematics\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066369x24700427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x24700427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
摘要对于方程 \((\operatorname{sgn} y){{\left| y \right|}^{m}}{{u}_{{xx}}}+ {{u}_{yy}}+ {{\alpha }_{0}}{{left| y \right|}^{(m-2)/2}}}{{u}_{x}}}。+ ({{\beta }_{0}}{text{/}}y){{u}_{y}}=0,\)考虑在某个无界混合域中,证明了问题解的唯一性和存在性定理,其中边界特征上有缺失移位条件,方程的退化区间上有类似的弗兰克尔型条件。
A Problem with Analogue of the Frankl and Mixing Conditions for the Gellerstedt Equation with Singular Coefficient
Abstract
For the equation \((\operatorname{sgn} y){{\left| y \right|}^{m}}{{u}_{{xx}}} + {{u}_{{yy}}} + {{\alpha }_{0}}{{\left| y \right|}^{{(m - 2)/2}}}{{u}_{x}} + ({{\beta }_{0}}{\text{/}}y){{u}_{y}} = 0,\) considered in some unbounded mixed domain, uniqueness and existence theorems are proved for a solution to the problem with the missing shift condition on the boundary characteristics and an analogue of the Frankl-type condition on the interval of degeneracy of the equation.