论加权伯格曼空间 $${{mathcal{B}}_{{2,\mu }}$ 盘中解析函数的最佳近似值

IF 0.5 Q3 MATHEMATICS
M. R. Langarshoev
{"title":"论加权伯格曼空间 $${{mathcal{B}}_{{2,\\mu }}$ 盘中解析函数的最佳近似值","authors":"M. R. Langarshoev","doi":"10.3103/s1066369x24700415","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Sharp inequalities between the best approximations of functions analytic in the unit disk are obtained using algebraic polynomials and the moduli of continuity of higher-order derivatives in the Bergman space <span>\\({{\\mathcal{B}}_{{2,\\mu }}}\\)</span> Based on these inequalities, the exact values of some known <span>\\(n\\)</span>-widths of classes of functions analytic in the unit disk are calculated.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"9 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Best Approximation of Functions Analytic in the Disk in the Weighted Bergman Space $${{\\\\mathcal{B}}_{{2,\\\\mu }}}$$\",\"authors\":\"M. R. Langarshoev\",\"doi\":\"10.3103/s1066369x24700415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Sharp inequalities between the best approximations of functions analytic in the unit disk are obtained using algebraic polynomials and the moduli of continuity of higher-order derivatives in the Bergman space <span>\\\\({{\\\\mathcal{B}}_{{2,\\\\mu }}}\\\\)</span> Based on these inequalities, the exact values of some known <span>\\\\(n\\\\)</span>-widths of classes of functions analytic in the unit disk are calculated.</p>\",\"PeriodicalId\":46110,\"journal\":{\"name\":\"Russian Mathematics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066369x24700415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x24700415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 利用代数多项式和伯格曼空间中高阶导数的连续性模数,得到了单位盘中解析函数的最佳近似值之间的尖锐不等式({{mathcal{B}}_{{2,\mu }}}\) 基于这些不等式,计算了单位盘中解析函数的一些已知类的\(n\)-宽的精确值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Best Approximation of Functions Analytic in the Disk in the Weighted Bergman Space $${{\mathcal{B}}_{{2,\mu }}}$$

Abstract

Sharp inequalities between the best approximations of functions analytic in the unit disk are obtained using algebraic polynomials and the moduli of continuity of higher-order derivatives in the Bergman space \({{\mathcal{B}}_{{2,\mu }}}\) Based on these inequalities, the exact values of some known \(n\)-widths of classes of functions analytic in the unit disk are calculated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信