{"title":"论加权伯格曼空间 $${{mathcal{B}}_{{2,\\mu }}$ 盘中解析函数的最佳近似值","authors":"M. R. Langarshoev","doi":"10.3103/s1066369x24700415","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Sharp inequalities between the best approximations of functions analytic in the unit disk are obtained using algebraic polynomials and the moduli of continuity of higher-order derivatives in the Bergman space <span>\\({{\\mathcal{B}}_{{2,\\mu }}}\\)</span> Based on these inequalities, the exact values of some known <span>\\(n\\)</span>-widths of classes of functions analytic in the unit disk are calculated.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"9 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Best Approximation of Functions Analytic in the Disk in the Weighted Bergman Space $${{\\\\mathcal{B}}_{{2,\\\\mu }}}$$\",\"authors\":\"M. R. Langarshoev\",\"doi\":\"10.3103/s1066369x24700415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Sharp inequalities between the best approximations of functions analytic in the unit disk are obtained using algebraic polynomials and the moduli of continuity of higher-order derivatives in the Bergman space <span>\\\\({{\\\\mathcal{B}}_{{2,\\\\mu }}}\\\\)</span> Based on these inequalities, the exact values of some known <span>\\\\(n\\\\)</span>-widths of classes of functions analytic in the unit disk are calculated.</p>\",\"PeriodicalId\":46110,\"journal\":{\"name\":\"Russian Mathematics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066369x24700415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x24700415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the Best Approximation of Functions Analytic in the Disk in the Weighted Bergman Space $${{\mathcal{B}}_{{2,\mu }}}$$
Abstract
Sharp inequalities between the best approximations of functions analytic in the unit disk are obtained using algebraic polynomials and the moduli of continuity of higher-order derivatives in the Bergman space \({{\mathcal{B}}_{{2,\mu }}}\) Based on these inequalities, the exact values of some known \(n\)-widths of classes of functions analytic in the unit disk are calculated.