{"title":"H1 空间上的均值差不等式","authors":"S. Demir","doi":"10.3103/s1066369x24700403","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Let <span>\\(({{x}_{n}})\\)</span> be a sequence and <span>\\(\\{ {{c}_{k}}\\} \\in {{\\ell }^{\\infty }}(\\mathbb{Z})\\)</span> such that <span>\\({{\\left\\| {{{c}_{k}}} \\right\\|}_{{{{\\ell }^{\\infty }}}}} \\leqslant 1\\)</span>. Define <span>\\(\\mathcal{G}({{x}_{n}}) = \\mathop {\\sup }\\limits_j \\left| {\\sum\\limits_{k = 0}^j \\,{{c}_{k}}\\left( {{{x}_{{{{n}_{{k + 1}}}}}} - {{x}_{{{{n}_{k}}}}}} \\right)} \\right|.\\)</span> Let now <span>\\((X,\\beta ,\\mu ,\\tau )\\)</span> be an ergodic, measure preserving dynamical system with <span>\\((X,\\beta ,\\mu )\\)</span> a totally <span>\\(\\sigma \\)</span>-finite measure space. Suppose that the sequence <span>\\(({{n}_{k}})\\)</span> is lacunary. Then we prove the following results: 1. Define <span>\\({{\\phi }_{n}}(x) = \\frac{1}{n}{{\\chi }_{{[0,n]}}}(x)\\)</span> on <span>\\(\\mathbb{R}\\)</span>. Then there exists a constant <span>\\(C > 0\\)</span> such that <span>\\({{\\left\\| {\\mathcal{G}({{\\phi }_{n}} * f)} \\right\\|}_{{{{L}^{1}}(\\mathbb{R})}}} \\leqslant C{{\\left\\| f \\right\\|}_{{{{H}^{1}}(\\mathbb{R})}}},\\)</span> for all <span>\\(f \\in {{H}^{1}}(\\mathbb{R})\\)</span>. 2. Let <span>\\({{A}_{n}}f(x) = \\frac{1}{n}\\sum\\limits_{k = 0}^{n - 1} \\,f({{\\tau }^{k}}x),\\)</span> be the usual ergodic averages in ergodic theory. Then <span>\\({{\\left\\| {\\mathcal{G}({{A}_{n}}f)} \\right\\|}_{{{{L}^{1}}(X)}}} \\leqslant C{{\\left\\| f \\right\\|}_{{{{H}^{1}}(X)}}},\\)</span> for all <span>\\(f \\in {{H}^{1}}(X)\\)</span>. 3. If <span>\\({{[f(x)\\log (x)]}^{ + }}\\)</span> is integrable, then <span>\\(\\mathcal{G}({{A}_{n}}f)\\)</span> is integrable.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"23 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inequalities for the Differences of Averages on H1 Spaces\",\"authors\":\"S. Demir\",\"doi\":\"10.3103/s1066369x24700403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Let <span>\\\\(({{x}_{n}})\\\\)</span> be a sequence and <span>\\\\(\\\\{ {{c}_{k}}\\\\} \\\\in {{\\\\ell }^{\\\\infty }}(\\\\mathbb{Z})\\\\)</span> such that <span>\\\\({{\\\\left\\\\| {{{c}_{k}}} \\\\right\\\\|}_{{{{\\\\ell }^{\\\\infty }}}}} \\\\leqslant 1\\\\)</span>. Define <span>\\\\(\\\\mathcal{G}({{x}_{n}}) = \\\\mathop {\\\\sup }\\\\limits_j \\\\left| {\\\\sum\\\\limits_{k = 0}^j \\\\,{{c}_{k}}\\\\left( {{{x}_{{{{n}_{{k + 1}}}}}} - {{x}_{{{{n}_{k}}}}}} \\\\right)} \\\\right|.\\\\)</span> Let now <span>\\\\((X,\\\\beta ,\\\\mu ,\\\\tau )\\\\)</span> be an ergodic, measure preserving dynamical system with <span>\\\\((X,\\\\beta ,\\\\mu )\\\\)</span> a totally <span>\\\\(\\\\sigma \\\\)</span>-finite measure space. Suppose that the sequence <span>\\\\(({{n}_{k}})\\\\)</span> is lacunary. Then we prove the following results: 1. Define <span>\\\\({{\\\\phi }_{n}}(x) = \\\\frac{1}{n}{{\\\\chi }_{{[0,n]}}}(x)\\\\)</span> on <span>\\\\(\\\\mathbb{R}\\\\)</span>. Then there exists a constant <span>\\\\(C > 0\\\\)</span> such that <span>\\\\({{\\\\left\\\\| {\\\\mathcal{G}({{\\\\phi }_{n}} * f)} \\\\right\\\\|}_{{{{L}^{1}}(\\\\mathbb{R})}}} \\\\leqslant C{{\\\\left\\\\| f \\\\right\\\\|}_{{{{H}^{1}}(\\\\mathbb{R})}}},\\\\)</span> for all <span>\\\\(f \\\\in {{H}^{1}}(\\\\mathbb{R})\\\\)</span>. 2. Let <span>\\\\({{A}_{n}}f(x) = \\\\frac{1}{n}\\\\sum\\\\limits_{k = 0}^{n - 1} \\\\,f({{\\\\tau }^{k}}x),\\\\)</span> be the usual ergodic averages in ergodic theory. Then <span>\\\\({{\\\\left\\\\| {\\\\mathcal{G}({{A}_{n}}f)} \\\\right\\\\|}_{{{{L}^{1}}(X)}}} \\\\leqslant C{{\\\\left\\\\| f \\\\right\\\\|}_{{{{H}^{1}}(X)}}},\\\\)</span> for all <span>\\\\(f \\\\in {{H}^{1}}(X)\\\\)</span>. 3. If <span>\\\\({{[f(x)\\\\log (x)]}^{ + }}\\\\)</span> is integrable, then <span>\\\\(\\\\mathcal{G}({{A}_{n}}f)\\\\)</span> is integrable.</p>\",\"PeriodicalId\":46110,\"journal\":{\"name\":\"Russian Mathematics\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066369x24700403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x24700403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Inequalities for the Differences of Averages on H1 Spaces
Abstract
Let \(({{x}_{n}})\) be a sequence and \(\{ {{c}_{k}}\} \in {{\ell }^{\infty }}(\mathbb{Z})\) such that \({{\left\| {{{c}_{k}}} \right\|}_{{{{\ell }^{\infty }}}}} \leqslant 1\). Define \(\mathcal{G}({{x}_{n}}) = \mathop {\sup }\limits_j \left| {\sum\limits_{k = 0}^j \,{{c}_{k}}\left( {{{x}_{{{{n}_{{k + 1}}}}}} - {{x}_{{{{n}_{k}}}}}} \right)} \right|.\) Let now \((X,\beta ,\mu ,\tau )\) be an ergodic, measure preserving dynamical system with \((X,\beta ,\mu )\) a totally \(\sigma \)-finite measure space. Suppose that the sequence \(({{n}_{k}})\) is lacunary. Then we prove the following results: 1. Define \({{\phi }_{n}}(x) = \frac{1}{n}{{\chi }_{{[0,n]}}}(x)\) on \(\mathbb{R}\). Then there exists a constant \(C > 0\) such that \({{\left\| {\mathcal{G}({{\phi }_{n}} * f)} \right\|}_{{{{L}^{1}}(\mathbb{R})}}} \leqslant C{{\left\| f \right\|}_{{{{H}^{1}}(\mathbb{R})}}},\) for all \(f \in {{H}^{1}}(\mathbb{R})\). 2. Let \({{A}_{n}}f(x) = \frac{1}{n}\sum\limits_{k = 0}^{n - 1} \,f({{\tau }^{k}}x),\) be the usual ergodic averages in ergodic theory. Then \({{\left\| {\mathcal{G}({{A}_{n}}f)} \right\|}_{{{{L}^{1}}(X)}}} \leqslant C{{\left\| f \right\|}_{{{{H}^{1}}(X)}}},\) for all \(f \in {{H}^{1}}(X)\). 3. If \({{[f(x)\log (x)]}^{ + }}\) is integrable, then \(\mathcal{G}({{A}_{n}}f)\) is integrable.