Shawn Kulakowski, Alex Rivier, Rita Kuo, Sonya Mengel, Thomas Eng
{"title":"在系统发育不同的重氮营养体中发展模块化表达","authors":"Shawn Kulakowski, Alex Rivier, Rita Kuo, Sonya Mengel, Thomas Eng","doi":"10.1093/jimb/kuae033","DOIUrl":null,"url":null,"abstract":"Diazotrophic bacteria can reduce atmospheric nitrogen into ammonia enabling bioavailability of the essential element. Many diazotrophs closely associate with plant roots increasing nitrogen availability, acting as plant growth promoters. These associations have the potential to reduce the need for costly synthetic fertilizers if they could be engineered for agricultural applications. However, despite the importance of diazotrophic bacteria, genetic tools are poorly developed in a limited number of species, in turn narrowing the crops and root microbiomes that can be targeted. Here we report optimized protocols and plasmids to manipulate phylogenetically diverse diazotrophs with the goal of enabling synthetic biology and genetic engineering. Three broad-host-range plasmids can be used across multiple diazotrophs, with the identification of one specific plasmid (containing origin of replication RK2 and a kanamycin resistance marker) showing the highest degree of compatibility across bacteria tested. We then demonstrated modular expression by testing seven promoters and eleven ribosomal binding sites using proxy fluorescent proteins. Finally, we tested four small molecule inducible systems to report expression in three diazotrophs and demonstrated genome editing in Klebsiella michiganensis M5al.","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":"4 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Modular Expression Across Phylogenetically Distinct Diazotrophs\",\"authors\":\"Shawn Kulakowski, Alex Rivier, Rita Kuo, Sonya Mengel, Thomas Eng\",\"doi\":\"10.1093/jimb/kuae033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diazotrophic bacteria can reduce atmospheric nitrogen into ammonia enabling bioavailability of the essential element. Many diazotrophs closely associate with plant roots increasing nitrogen availability, acting as plant growth promoters. These associations have the potential to reduce the need for costly synthetic fertilizers if they could be engineered for agricultural applications. However, despite the importance of diazotrophic bacteria, genetic tools are poorly developed in a limited number of species, in turn narrowing the crops and root microbiomes that can be targeted. Here we report optimized protocols and plasmids to manipulate phylogenetically diverse diazotrophs with the goal of enabling synthetic biology and genetic engineering. Three broad-host-range plasmids can be used across multiple diazotrophs, with the identification of one specific plasmid (containing origin of replication RK2 and a kanamycin resistance marker) showing the highest degree of compatibility across bacteria tested. We then demonstrated modular expression by testing seven promoters and eleven ribosomal binding sites using proxy fluorescent proteins. Finally, we tested four small molecule inducible systems to report expression in three diazotrophs and demonstrated genome editing in Klebsiella michiganensis M5al.\",\"PeriodicalId\":16092,\"journal\":{\"name\":\"Journal of Industrial Microbiology & Biotechnology\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Microbiology & Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jimb/kuae033\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Microbiology & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jimb/kuae033","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Development of Modular Expression Across Phylogenetically Distinct Diazotrophs
Diazotrophic bacteria can reduce atmospheric nitrogen into ammonia enabling bioavailability of the essential element. Many diazotrophs closely associate with plant roots increasing nitrogen availability, acting as plant growth promoters. These associations have the potential to reduce the need for costly synthetic fertilizers if they could be engineered for agricultural applications. However, despite the importance of diazotrophic bacteria, genetic tools are poorly developed in a limited number of species, in turn narrowing the crops and root microbiomes that can be targeted. Here we report optimized protocols and plasmids to manipulate phylogenetically diverse diazotrophs with the goal of enabling synthetic biology and genetic engineering. Three broad-host-range plasmids can be used across multiple diazotrophs, with the identification of one specific plasmid (containing origin of replication RK2 and a kanamycin resistance marker) showing the highest degree of compatibility across bacteria tested. We then demonstrated modular expression by testing seven promoters and eleven ribosomal binding sites using proxy fluorescent proteins. Finally, we tested four small molecule inducible systems to report expression in three diazotrophs and demonstrated genome editing in Klebsiella michiganensis M5al.
期刊介绍:
The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers describing original research, short communications, and critical reviews in the fields of biotechnology, fermentation and cell culture, biocatalysis, environmental microbiology, natural products discovery and biosynthesis, marine natural products, metabolic engineering, genomics, bioinformatics, food microbiology, and other areas of applied microbiology