Louis Schatzki, Linjian Ma, Edgar Solomonik, Eric Chitambar
{"title":"图状态的张量等级和其他多方纠缠度量","authors":"Louis Schatzki, Linjian Ma, Edgar Solomonik, Eric Chitambar","doi":"10.1103/physreva.110.032409","DOIUrl":null,"url":null,"abstract":"Graph states play an important role in quantum information theory through their connection to measurement-based computing and error correction. Prior work revealed elegant connections between the graph structure of these states and their multipartite entanglement. We continue this line of investigation by identifying additional entanglement properties for certain types of graph states. From the perspective of tensor theory, we tighten both upper and lower bounds on the tensor rank of odd ring states (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mo>|</mo></mrow><msub><mi>R</mi><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mrow><mo>〉</mo></mrow></mrow></math>) to read <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msup><mn>2</mn><mi>n</mi></msup><mo>+</mo><mn>1</mn><mo>≤</mo><mi>rank</mi><mrow><mo>(</mo><mrow><mrow><mo>|</mo></mrow><msub><mi>R</mi><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mrow><mo>〉</mo></mrow></mrow><mo>)</mo></mrow><mo>≤</mo><mn>3</mn><mo>×</mo><msup><mn>2</mn><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></math>. Next we show that several multipartite extensions of bipartite entanglement measures are dichotomous for graph states based on the connectivity of the corresponding graph. Finally, we give a simple graph rule for computing the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math>-tangle <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>τ</mi><mi>n</mi></msub></math>.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":"99 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensor rank and other multipartite entanglement measures of graph states\",\"authors\":\"Louis Schatzki, Linjian Ma, Edgar Solomonik, Eric Chitambar\",\"doi\":\"10.1103/physreva.110.032409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph states play an important role in quantum information theory through their connection to measurement-based computing and error correction. Prior work revealed elegant connections between the graph structure of these states and their multipartite entanglement. We continue this line of investigation by identifying additional entanglement properties for certain types of graph states. From the perspective of tensor theory, we tighten both upper and lower bounds on the tensor rank of odd ring states (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mrow><mo>|</mo></mrow><msub><mi>R</mi><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mrow><mo>〉</mo></mrow></mrow></math>) to read <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msup><mn>2</mn><mi>n</mi></msup><mo>+</mo><mn>1</mn><mo>≤</mo><mi>rank</mi><mrow><mo>(</mo><mrow><mrow><mo>|</mo></mrow><msub><mi>R</mi><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mrow><mo>〉</mo></mrow></mrow><mo>)</mo></mrow><mo>≤</mo><mn>3</mn><mo>×</mo><msup><mn>2</mn><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></math>. Next we show that several multipartite extensions of bipartite entanglement measures are dichotomous for graph states based on the connectivity of the corresponding graph. Finally, we give a simple graph rule for computing the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi></math>-tangle <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>τ</mi><mi>n</mi></msub></math>.\",\"PeriodicalId\":20146,\"journal\":{\"name\":\"Physical Review A\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.110.032409\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.032409","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
摘要
通过与基于测量的计算和纠错的联系,图态在量子信息论中发挥着重要作用。先前的研究揭示了这些态的图结构与其多方纠缠之间的优雅联系。我们将继续这一研究方向,为某些类型的图状态确定额外的纠缠特性。从张量理论的角度看,我们收紧了奇数环状态(|R2n+1〉)张量秩的上下限,读作 2n+1≤rank(|R2n+1〉)≤3×2n-1。接下来,我们证明了双方位纠缠度量的几个多方位扩展是基于相应图的连通性对图态进行二分的。最后,我们给出了计算 n 三角形 τn 的简单图规则。
Tensor rank and other multipartite entanglement measures of graph states
Graph states play an important role in quantum information theory through their connection to measurement-based computing and error correction. Prior work revealed elegant connections between the graph structure of these states and their multipartite entanglement. We continue this line of investigation by identifying additional entanglement properties for certain types of graph states. From the perspective of tensor theory, we tighten both upper and lower bounds on the tensor rank of odd ring states () to read . Next we show that several multipartite extensions of bipartite entanglement measures are dichotomous for graph states based on the connectivity of the corresponding graph. Finally, we give a simple graph rule for computing the -tangle .
期刊介绍:
Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts.
PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including:
-Fundamental concepts
-Quantum information
-Atomic and molecular structure and dynamics; high-precision measurement
-Atomic and molecular collisions and interactions
-Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
-Matter waves and collective properties of cold atoms and molecules
-Quantum optics, physics of lasers, nonlinear optics, and classical optics