量子行走的克雷洛夫扩散复杂性

IF 2.9 2区 物理与天体物理 Q2 Physics and Astronomy
Bhilahari Jeevanesan
{"title":"量子行走的克雷洛夫扩散复杂性","authors":"Bhilahari Jeevanesan","doi":"10.1103/physreva.110.032206","DOIUrl":null,"url":null,"abstract":"Given the recent advances in quantum technology, the complexity of quantum states is an important notion. The idea of the <i>Krylov spread complexity</i> has come into focus recently with the goal of capturing this in a quantitative way. The present paper sheds light on the Krylov complexity measure by exploring it in the context of continuous-time quantum walks on graphs. A close relationship between Krylov spread complexity and the concept of <i>limiting distributions</i> for quantum walks is established. Moreover, using a graph optimization algorithm, quantum-walk graphs are constructed that have vertex states with minimal and maximal (long-time average) Krylov <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover accent=\"true\"><mi mathvariant=\"script\">C</mi><mo>¯</mo></mover></math> complexity. This reveals an empirical upper bound for the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover accent=\"true\"><mi mathvariant=\"script\">C</mi><mo>¯</mo></mover></math> complexity as a function of Hilbert-space dimension and an exact lower bound.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":"15 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Krylov spread complexity of quantum walks\",\"authors\":\"Bhilahari Jeevanesan\",\"doi\":\"10.1103/physreva.110.032206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the recent advances in quantum technology, the complexity of quantum states is an important notion. The idea of the <i>Krylov spread complexity</i> has come into focus recently with the goal of capturing this in a quantitative way. The present paper sheds light on the Krylov complexity measure by exploring it in the context of continuous-time quantum walks on graphs. A close relationship between Krylov spread complexity and the concept of <i>limiting distributions</i> for quantum walks is established. Moreover, using a graph optimization algorithm, quantum-walk graphs are constructed that have vertex states with minimal and maximal (long-time average) Krylov <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mover accent=\\\"true\\\"><mi mathvariant=\\\"script\\\">C</mi><mo>¯</mo></mover></math> complexity. This reveals an empirical upper bound for the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mover accent=\\\"true\\\"><mi mathvariant=\\\"script\\\">C</mi><mo>¯</mo></mover></math> complexity as a function of Hilbert-space dimension and an exact lower bound.\",\"PeriodicalId\":20146,\"journal\":{\"name\":\"Physical Review A\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.110.032206\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.032206","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

鉴于量子技术的最新进展,量子态的复杂性是一个重要的概念。克雷洛夫扩散复杂度的概念最近受到关注,其目标是以定量的方式捕捉这种复杂度。本文以图上的连续时间量子行走为背景,探讨了克雷洛夫复杂性度量。本文建立了克雷洛夫扩散复杂度与量子行走极限分布概念之间的密切关系。此外,利用图优化算法,构建了具有最小和最大(长期平均)克雷洛夫 C¯复杂度的顶点状态的量子行走图。这揭示了作为希尔伯特空间维度函数的 C¯ 复杂性的经验上限和精确下限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Krylov spread complexity of quantum walks

Krylov spread complexity of quantum walks
Given the recent advances in quantum technology, the complexity of quantum states is an important notion. The idea of the Krylov spread complexity has come into focus recently with the goal of capturing this in a quantitative way. The present paper sheds light on the Krylov complexity measure by exploring it in the context of continuous-time quantum walks on graphs. A close relationship between Krylov spread complexity and the concept of limiting distributions for quantum walks is established. Moreover, using a graph optimization algorithm, quantum-walk graphs are constructed that have vertex states with minimal and maximal (long-time average) Krylov C¯ complexity. This reveals an empirical upper bound for the C¯ complexity as a function of Hilbert-space dimension and an exact lower bound.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review A
Physical Review A 物理-光学
CiteScore
5.40
自引率
24.10%
发文量
0
审稿时长
2.2 months
期刊介绍: Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts. PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including: -Fundamental concepts -Quantum information -Atomic and molecular structure and dynamics; high-precision measurement -Atomic and molecular collisions and interactions -Atomic and molecular processes in external fields, including interactions with strong fields and short pulses -Matter waves and collective properties of cold atoms and molecules -Quantum optics, physics of lasers, nonlinear optics, and classical optics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信