{"title":"通过非线性耦合电-纳米-光-机械振荡器实现受控-非量子门","authors":"Reihaneh Alinaghipour, Hamidreza Mohammadi","doi":"10.1103/physreva.110.032412","DOIUrl":null,"url":null,"abstract":"A feasibility study is done for the possibility of a universal set of quantum gate implementation based on phononic state via fourth-order Duffing nonlinearity in an optomechanical system. The optomechanical system consists of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>N</mi></mrow></math> doubly clamped coupled nanobeam arrays driven by local static and radio frequency electrical potentials, coupled to a single-mode high-finesse optical cavity. The results show that the ideal <span>cnot</span> gate can be implemented only under nonresonance dynamics when the dissipation processes are negligible.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of controlled-not quantum gate by nonlinear coupled electro-nano-optomechanical oscillators\",\"authors\":\"Reihaneh Alinaghipour, Hamidreza Mohammadi\",\"doi\":\"10.1103/physreva.110.032412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A feasibility study is done for the possibility of a universal set of quantum gate implementation based on phononic state via fourth-order Duffing nonlinearity in an optomechanical system. The optomechanical system consists of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>N</mi></mrow></math> doubly clamped coupled nanobeam arrays driven by local static and radio frequency electrical potentials, coupled to a single-mode high-finesse optical cavity. The results show that the ideal <span>cnot</span> gate can be implemented only under nonresonance dynamics when the dissipation processes are negligible.\",\"PeriodicalId\":20146,\"journal\":{\"name\":\"Physical Review A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.110.032412\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.032412","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
摘要
研究人员通过光机械系统中的四阶达芬非线性,对基于声子态的通用量子门实现的可能性进行了可行性研究。光机械系统由 N 个双钳位耦合纳米束阵列组成,由局部静态和射频电势驱动,并与单模高精细光腔耦合。结果表明,只有在耗散过程可忽略不计的非共振动力学条件下,才能实现理想的 cnot 栅极。
Implementation of controlled-not quantum gate by nonlinear coupled electro-nano-optomechanical oscillators
A feasibility study is done for the possibility of a universal set of quantum gate implementation based on phononic state via fourth-order Duffing nonlinearity in an optomechanical system. The optomechanical system consists of doubly clamped coupled nanobeam arrays driven by local static and radio frequency electrical potentials, coupled to a single-mode high-finesse optical cavity. The results show that the ideal cnot gate can be implemented only under nonresonance dynamics when the dissipation processes are negligible.
期刊介绍:
Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts.
PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including:
-Fundamental concepts
-Quantum information
-Atomic and molecular structure and dynamics; high-precision measurement
-Atomic and molecular collisions and interactions
-Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
-Matter waves and collective properties of cold atoms and molecules
-Quantum optics, physics of lasers, nonlinear optics, and classical optics