J. A. Cianciulli, R. Rossignoli, M. Di Tullio, N. Gigena, Federico Petrovich
{"title":"N 个无差别粒子纯态的二方表示和多体纠缠","authors":"J. A. Cianciulli, R. Rossignoli, M. Di Tullio, N. Gigena, Federico Petrovich","doi":"10.1103/physreva.110.032414","DOIUrl":null,"url":null,"abstract":"We analyze a general bipartite-like representation of arbitrary pure states of <i>N</i> indistinguishable partcles, valid for both bosons and fermions, based on <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>M</mi></math>- and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>(</mo><mi>N</mi><mo>−</mo><mi>M</mi><mo>)</mo></mrow></math>-particle states. It leads to exact <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>(</mo><mi>M</mi><mo>,</mo><mi>N</mi><mo>−</mo><mi>M</mi><mo>)</mo></mrow></math> Schmidt-like expansions of the state for any <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>M</mi><mo><</mo><mi>N</mi></mrow></math> and is directly related to the isospectral reduced <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>M</mi></math>- and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>(</mo><mi>N</mi><mo>−</mo><mi>M</mi><mo>)</mo></mrow></math>-body density matrices <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>ρ</mi><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></msup></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>ρ</mi><mrow><mo>(</mo><mi>N</mi><mo>−</mo><mi>M</mi><mo>)</mo></mrow></msup></math>. The formalism also allows for reduced yet still exact Schmidt-like decompositions associated with blocks of these densities, in systems having a fixed fraction of the particles in some single-particle subspace. Monotonicity of the ensuing <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>M</mi></math>-body entanglement under a certain set of quantum operations is also discussed. Illustrative examples in fermionic and bosonic systems with pairing correlations are provided, which show that in the presence of dominant eigenvalues in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>ρ</mi><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></msup></math>, approximations based on a few terms of the pertinent Schmidt expansion can provide a reliable description of the state. The associated one- and two-body entanglement spectrum and entropies are also analyzed.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":"6 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bipartite representations and many-body entanglement of pure states of N indistinguishable particles\",\"authors\":\"J. A. Cianciulli, R. Rossignoli, M. Di Tullio, N. Gigena, Federico Petrovich\",\"doi\":\"10.1103/physreva.110.032414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze a general bipartite-like representation of arbitrary pure states of <i>N</i> indistinguishable partcles, valid for both bosons and fermions, based on <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>M</mi></math>- and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mo>(</mo><mi>N</mi><mo>−</mo><mi>M</mi><mo>)</mo></mrow></math>-particle states. It leads to exact <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mo>(</mo><mi>M</mi><mo>,</mo><mi>N</mi><mo>−</mo><mi>M</mi><mo>)</mo></mrow></math> Schmidt-like expansions of the state for any <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>M</mi><mo><</mo><mi>N</mi></mrow></math> and is directly related to the isospectral reduced <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>M</mi></math>- and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mo>(</mo><mi>N</mi><mo>−</mo><mi>M</mi><mo>)</mo></mrow></math>-body density matrices <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi>ρ</mi><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></msup></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi>ρ</mi><mrow><mo>(</mo><mi>N</mi><mo>−</mo><mi>M</mi><mo>)</mo></mrow></msup></math>. The formalism also allows for reduced yet still exact Schmidt-like decompositions associated with blocks of these densities, in systems having a fixed fraction of the particles in some single-particle subspace. Monotonicity of the ensuing <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>M</mi></math>-body entanglement under a certain set of quantum operations is also discussed. Illustrative examples in fermionic and bosonic systems with pairing correlations are provided, which show that in the presence of dominant eigenvalues in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi>ρ</mi><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></msup></math>, approximations based on a few terms of the pertinent Schmidt expansion can provide a reliable description of the state. The associated one- and two-body entanglement spectrum and entropies are also analyzed.\",\"PeriodicalId\":20146,\"journal\":{\"name\":\"Physical Review A\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.110.032414\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.032414","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
摘要
我们分析了基于 M 粒子和 (N-M) 粒子态的 N 个不可区分部分的任意纯态的一般双星样表示,它对玻色子和费米子都有效。对于任何 M<N,它都能导致状态的精确(M,N-M)施密特式展开,并与等谱还原的 M 和 (N-M) 粒子密度矩阵 ρ(M) 和 ρ(N-M) 直接相关。在某些单粒子子空间中有固定部分粒子的系统中,该形式主义还允许与这些密度块相关的简化但仍然精确的施密特式分解。此外,还讨论了在特定量子操作下随之产生的 M 体纠缠的单调性。我们还提供了具有配对相关性的费米子和玻色子系统的示例,这些示例表明,在 ρ(M) 存在主导特征值的情况下,基于相关施密特展开的几个项的近似可以提供对状态的可靠描述。此外,还分析了相关的一体和二体纠缠谱和熵。
Bipartite representations and many-body entanglement of pure states of N indistinguishable particles
We analyze a general bipartite-like representation of arbitrary pure states of N indistinguishable partcles, valid for both bosons and fermions, based on - and -particle states. It leads to exact Schmidt-like expansions of the state for any and is directly related to the isospectral reduced - and -body density matrices and . The formalism also allows for reduced yet still exact Schmidt-like decompositions associated with blocks of these densities, in systems having a fixed fraction of the particles in some single-particle subspace. Monotonicity of the ensuing -body entanglement under a certain set of quantum operations is also discussed. Illustrative examples in fermionic and bosonic systems with pairing correlations are provided, which show that in the presence of dominant eigenvalues in , approximations based on a few terms of the pertinent Schmidt expansion can provide a reliable description of the state. The associated one- and two-body entanglement spectrum and entropies are also analyzed.
期刊介绍:
Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts.
PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including:
-Fundamental concepts
-Quantum information
-Atomic and molecular structure and dynamics; high-precision measurement
-Atomic and molecular collisions and interactions
-Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
-Matter waves and collective properties of cold atoms and molecules
-Quantum optics, physics of lasers, nonlinear optics, and classical optics