双方费米子系统的相纠缠负性

IF 2.9 2区 物理与天体物理 Q2 Physics and Astronomy
Bing Xu, Xiaofei Qi, Jinchuan Hou
{"title":"双方费米子系统的相纠缠负性","authors":"Bing Xu, Xiaofei Qi, Jinchuan Hou","doi":"10.1103/physreva.110.032417","DOIUrl":null,"url":null,"abstract":"We discuss the behavior of positive linear maps in fermionic systems and then propose the phase partial transpose and the phase entanglement negativity. We show that every fermionic state which mixes local fermion-number parity must have nonvanishing nontrivial phase entanglement negativity, which gives an affirmative answer to a conjecture proposed by Shapourian and Ryu [<span>Phys. Rev. A</span> <b>99</b>, 022310 (2019)]. In addition, we prove that the phase entanglement negativity is an entanglement monotone and establish some equalities and inequalities related to the phase entanglement negativity which, particularly, provide some upper bounds and lower bounds of the fermionic entanglement negativity. A more detailed discussion of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>M</mi><mo>)</mo></mrow></math>-mode case is also presented, and our results generalize some known findings.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase entanglement negativity for bipartite fermionic systems\",\"authors\":\"Bing Xu, Xiaofei Qi, Jinchuan Hou\",\"doi\":\"10.1103/physreva.110.032417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the behavior of positive linear maps in fermionic systems and then propose the phase partial transpose and the phase entanglement negativity. We show that every fermionic state which mixes local fermion-number parity must have nonvanishing nontrivial phase entanglement negativity, which gives an affirmative answer to a conjecture proposed by Shapourian and Ryu [<span>Phys. Rev. A</span> <b>99</b>, 022310 (2019)]. In addition, we prove that the phase entanglement negativity is an entanglement monotone and establish some equalities and inequalities related to the phase entanglement negativity which, particularly, provide some upper bounds and lower bounds of the fermionic entanglement negativity. A more detailed discussion of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>M</mi><mo>)</mo></mrow></math>-mode case is also presented, and our results generalize some known findings.\",\"PeriodicalId\":20146,\"journal\":{\"name\":\"Physical Review A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.110.032417\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.032417","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了费米子系统中正线性映射的行为,然后提出了相位部分转置和相位纠缠负性。我们证明了每一个混合了局部费米子数奇偶性的费米子态必定具有非消失的非琐相位纠缠负性,这给 Shapourian 和 Ryu 提出的猜想[Phys. Rev. A 99, 022310 (2019)]一个肯定的答案。此外,我们还证明了相纠缠负性是一个纠缠单调性,并建立了一些与相纠缠负性相关的等式和不等式,特别是提供了费米子纠缠负性的一些上界和下界。我们还对 (1+M) 模式的情况进行了更详细的讨论,我们的结果概括了一些已知的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase entanglement negativity for bipartite fermionic systems
We discuss the behavior of positive linear maps in fermionic systems and then propose the phase partial transpose and the phase entanglement negativity. We show that every fermionic state which mixes local fermion-number parity must have nonvanishing nontrivial phase entanglement negativity, which gives an affirmative answer to a conjecture proposed by Shapourian and Ryu [Phys. Rev. A 99, 022310 (2019)]. In addition, we prove that the phase entanglement negativity is an entanglement monotone and establish some equalities and inequalities related to the phase entanglement negativity which, particularly, provide some upper bounds and lower bounds of the fermionic entanglement negativity. A more detailed discussion of the (1+M)-mode case is also presented, and our results generalize some known findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review A
Physical Review A 物理-光学
CiteScore
5.40
自引率
24.10%
发文量
0
审稿时长
2.2 months
期刊介绍: Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts. PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including: -Fundamental concepts -Quantum information -Atomic and molecular structure and dynamics; high-precision measurement -Atomic and molecular collisions and interactions -Atomic and molecular processes in external fields, including interactions with strong fields and short pulses -Matter waves and collective properties of cold atoms and molecules -Quantum optics, physics of lasers, nonlinear optics, and classical optics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信