{"title":"数据集和基准:用于自动驾驶车辆感知的新型传感器","authors":"Spencer Carmichael, Austin Buchan, Mani Ramanagopal, Radhika Ravi, Ram Vasudevan, Katherine A Skinner","doi":"10.1177/02783649241273554","DOIUrl":null,"url":null,"abstract":"Conventional cameras employed in autonomous vehicle (AV) systems support many perception tasks but are challenged by low-light or high dynamic range scenes, adverse weather, and fast motion. Novel sensors, such as event and thermal cameras, offer capabilities with the potential to address these scenarios, but they remain to be fully exploited. This paper introduces the Novel Sensors for Autonomous Vehicle Perception (NSAVP) dataset to facilitate future research on this topic. The dataset was captured with a platform including stereo event, thermal, monochrome, and RGB cameras as well as a high precision navigation system providing ground truth poses. The data was collected by repeatedly driving two ∼8 km routes and includes varied lighting conditions and opposing viewpoint perspectives. We provide benchmarking experiments on the task of place recognition to demonstrate challenges and opportunities for novel sensors to enhance critical AV perception tasks. To our knowledge, the NSAVP dataset is the first to include stereo thermal cameras together with stereo event and monochrome cameras. The dataset and supporting software suite is available at https://umautobots.github.io/nsavp .","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dataset and Benchmark: Novel Sensors for Autonomous Vehicle Perception\",\"authors\":\"Spencer Carmichael, Austin Buchan, Mani Ramanagopal, Radhika Ravi, Ram Vasudevan, Katherine A Skinner\",\"doi\":\"10.1177/02783649241273554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional cameras employed in autonomous vehicle (AV) systems support many perception tasks but are challenged by low-light or high dynamic range scenes, adverse weather, and fast motion. Novel sensors, such as event and thermal cameras, offer capabilities with the potential to address these scenarios, but they remain to be fully exploited. This paper introduces the Novel Sensors for Autonomous Vehicle Perception (NSAVP) dataset to facilitate future research on this topic. The dataset was captured with a platform including stereo event, thermal, monochrome, and RGB cameras as well as a high precision navigation system providing ground truth poses. The data was collected by repeatedly driving two ∼8 km routes and includes varied lighting conditions and opposing viewpoint perspectives. We provide benchmarking experiments on the task of place recognition to demonstrate challenges and opportunities for novel sensors to enhance critical AV perception tasks. To our knowledge, the NSAVP dataset is the first to include stereo thermal cameras together with stereo event and monochrome cameras. The dataset and supporting software suite is available at https://umautobots.github.io/nsavp .\",\"PeriodicalId\":501362,\"journal\":{\"name\":\"The International Journal of Robotics Research\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Journal of Robotics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/02783649241273554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/02783649241273554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dataset and Benchmark: Novel Sensors for Autonomous Vehicle Perception
Conventional cameras employed in autonomous vehicle (AV) systems support many perception tasks but are challenged by low-light or high dynamic range scenes, adverse weather, and fast motion. Novel sensors, such as event and thermal cameras, offer capabilities with the potential to address these scenarios, but they remain to be fully exploited. This paper introduces the Novel Sensors for Autonomous Vehicle Perception (NSAVP) dataset to facilitate future research on this topic. The dataset was captured with a platform including stereo event, thermal, monochrome, and RGB cameras as well as a high precision navigation system providing ground truth poses. The data was collected by repeatedly driving two ∼8 km routes and includes varied lighting conditions and opposing viewpoint perspectives. We provide benchmarking experiments on the task of place recognition to demonstrate challenges and opportunities for novel sensors to enhance critical AV perception tasks. To our knowledge, the NSAVP dataset is the first to include stereo thermal cameras together with stereo event and monochrome cameras. The dataset and supporting software suite is available at https://umautobots.github.io/nsavp .