页岩风化岩石碳通量的水文控制

Jiamin Wan, Tetsu K. Tokunaga, Curtis A. Beutler, Alexander W. Newman, Wenming Dong, Markus Bill, Wendy S. Brown, Amanda N. Henderson, Anh Phuong Tran, Kenneth H. Williams
{"title":"页岩风化岩石碳通量的水文控制","authors":"Jiamin Wan, Tetsu K. Tokunaga, Curtis A. Beutler, Alexander W. Newman, Wenming Dong, Markus Bill, Wendy S. Brown, Amanda N. Henderson, Anh Phuong Tran, Kenneth H. Williams","doi":"10.1038/s44221-024-00293-8","DOIUrl":null,"url":null,"abstract":"Shale bedrocks hold Earth’s largest carbon inventory. Although water is recognized for cycling elements through terrestrial environments, understanding how hydrology controls ancient rock carbon (Crock) release is limited. Here we measured depth- and season-dependent subsurface water fluxes and pore-water and pore-gas geochemistry (including radiocarbon) over five vastly different water years along a hillslope. The data reveal that the maximum depth of annual water table oscillations determines the weathering depth. Seasonally varying subsurface water fluxes determine the export forms and rates of weathered Crock. Eighty percent of released Crock is emitted as CO2 to the atmosphere primarily during warmer and lower water table seasons and 20% of released Crock as bicarbonate exports mostly during months of snowmelt to the hydrosphere. Thus, the rates and forms of Crock weathering and export are clearly controlled by climate via hydrologic regulation of oxygen availability and subsurface flow. The approaches developed here can be applied to other environments. This study shows that climate-driven hydrology primarily controls subsurface rock carbon weathering, with the groundwater table regulating the weathering depth and subsurface water fluxes determining the transported forms and rates of carbon released from rocks, based on measurements in the East River watershed, Rocky Mountains, United States.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"2 9","pages":"848-862"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44221-024-00293-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Hydrological control of rock carbon fluxes from shale weathering\",\"authors\":\"Jiamin Wan, Tetsu K. Tokunaga, Curtis A. Beutler, Alexander W. Newman, Wenming Dong, Markus Bill, Wendy S. Brown, Amanda N. Henderson, Anh Phuong Tran, Kenneth H. Williams\",\"doi\":\"10.1038/s44221-024-00293-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shale bedrocks hold Earth’s largest carbon inventory. Although water is recognized for cycling elements through terrestrial environments, understanding how hydrology controls ancient rock carbon (Crock) release is limited. Here we measured depth- and season-dependent subsurface water fluxes and pore-water and pore-gas geochemistry (including radiocarbon) over five vastly different water years along a hillslope. The data reveal that the maximum depth of annual water table oscillations determines the weathering depth. Seasonally varying subsurface water fluxes determine the export forms and rates of weathered Crock. Eighty percent of released Crock is emitted as CO2 to the atmosphere primarily during warmer and lower water table seasons and 20% of released Crock as bicarbonate exports mostly during months of snowmelt to the hydrosphere. Thus, the rates and forms of Crock weathering and export are clearly controlled by climate via hydrologic regulation of oxygen availability and subsurface flow. The approaches developed here can be applied to other environments. This study shows that climate-driven hydrology primarily controls subsurface rock carbon weathering, with the groundwater table regulating the weathering depth and subsurface water fluxes determining the transported forms and rates of carbon released from rocks, based on measurements in the East River watershed, Rocky Mountains, United States.\",\"PeriodicalId\":74252,\"journal\":{\"name\":\"Nature water\",\"volume\":\"2 9\",\"pages\":\"848-862\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44221-024-00293-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44221-024-00293-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature water","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44221-024-00293-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

页岩基岩拥有地球上最大的碳库存。尽管水是陆地环境中公认的元素循环系统,但人们对水文如何控制古岩碳(Crock)释放的了解还很有限。在这里,我们测量了一个山坡上五个不同水年中与深度和季节相关的地下水通量以及孔隙水和孔隙气地球化学(包括放射性碳)。数据显示,地下水位年波动的最大深度决定了风化深度。季节性变化的地下水通量决定了风化克罗克的输出形式和速率。释放出的 80% 的 Crock 主要在温度较高和地下水位较低的季节以二氧化碳的形式排入大气,20% 的 Crock 主要在融雪月份以碳酸氢盐的形式排入水圈。因此,通过水文对氧气供应和地下流动的调节,克罗克风化和输出的速率和形式明显受到气候的控制。本文提出的方法可应用于其他环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hydrological control of rock carbon fluxes from shale weathering

Hydrological control of rock carbon fluxes from shale weathering

Hydrological control of rock carbon fluxes from shale weathering
Shale bedrocks hold Earth’s largest carbon inventory. Although water is recognized for cycling elements through terrestrial environments, understanding how hydrology controls ancient rock carbon (Crock) release is limited. Here we measured depth- and season-dependent subsurface water fluxes and pore-water and pore-gas geochemistry (including radiocarbon) over five vastly different water years along a hillslope. The data reveal that the maximum depth of annual water table oscillations determines the weathering depth. Seasonally varying subsurface water fluxes determine the export forms and rates of weathered Crock. Eighty percent of released Crock is emitted as CO2 to the atmosphere primarily during warmer and lower water table seasons and 20% of released Crock as bicarbonate exports mostly during months of snowmelt to the hydrosphere. Thus, the rates and forms of Crock weathering and export are clearly controlled by climate via hydrologic regulation of oxygen availability and subsurface flow. The approaches developed here can be applied to other environments. This study shows that climate-driven hydrology primarily controls subsurface rock carbon weathering, with the groundwater table regulating the weathering depth and subsurface water fluxes determining the transported forms and rates of carbon released from rocks, based on measurements in the East River watershed, Rocky Mountains, United States.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信