第 11 章 激光焊接电子模块电子模块的激光焊接

IF 0.9 Q3 Engineering
V. L. Lanin, V. A. Emel’yanov, I. B. Petuhov
{"title":"第 11 章 激光焊接电子模块电子模块的激光焊接","authors":"V. L. Lanin,&nbsp;V. A. Emel’yanov,&nbsp;I. B. Petuhov","doi":"10.3103/S106837552470011X","DOIUrl":null,"url":null,"abstract":"<p>The primary types of lasers and laser diode systems used for assembly soldering are examined in detail. The technological features of laser soldering are presented for various types of contact connections in electronic modules, including bulk conductors, planar lead elements, chips, and device packages. By modeling the parameters of laser soldering, the optimal technological regimes for these processes have been determined. Laser radiation offers several advantages over infrared methods, including high localization of power in the heating zone, noninertial impact allowing for heating with short-duration pulses, precise dosing of emitted energy, and a minimal thermal effect zone. Soldered joints created through laser soldering exhibit a glossy surface, well-formed fillets, and enhanced strength properties. The ability to regulate flexibly and dose precisely the supplied energy enables the adjustment of temperature and soldering time over a wide range, enhancing the control and quality of the soldering process.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 3","pages":"508 - 519"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chapter 11. Laser Soldering of Electronic Modules\",\"authors\":\"V. L. Lanin,&nbsp;V. A. Emel’yanov,&nbsp;I. B. Petuhov\",\"doi\":\"10.3103/S106837552470011X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The primary types of lasers and laser diode systems used for assembly soldering are examined in detail. The technological features of laser soldering are presented for various types of contact connections in electronic modules, including bulk conductors, planar lead elements, chips, and device packages. By modeling the parameters of laser soldering, the optimal technological regimes for these processes have been determined. Laser radiation offers several advantages over infrared methods, including high localization of power in the heating zone, noninertial impact allowing for heating with short-duration pulses, precise dosing of emitted energy, and a minimal thermal effect zone. Soldered joints created through laser soldering exhibit a glossy surface, well-formed fillets, and enhanced strength properties. The ability to regulate flexibly and dose precisely the supplied energy enables the adjustment of temperature and soldering time over a wide range, enhancing the control and quality of the soldering process.</p>\",\"PeriodicalId\":782,\"journal\":{\"name\":\"Surface Engineering and Applied Electrochemistry\",\"volume\":\"60 3\",\"pages\":\"508 - 519\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering and Applied Electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S106837552470011X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S106837552470011X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要 详细介绍了用于装配焊接的激光器和激光二极管系统的主要类型。介绍了激光焊接的技术特点,适用于电子模块中各种类型的接触连接,包括散装导体、平面引线元件、芯片和器件封装。通过对激光焊接参数的建模,确定了这些工艺的最佳技术状态。与红外线方法相比,激光辐射具有多项优势,包括加热区功率定位精度高、非惯性影响允许短脉冲加热、发射能量剂量精确以及热效应区最小。通过激光焊接产生的焊点表面光亮、圆角成型良好,而且强度更高。由于能够灵活调节和精确分配所提供的能量,因此可以在很大范围内调节温度和焊接时间,从而提高焊接过程的控制和质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Chapter 11. Laser Soldering of Electronic Modules

Chapter 11. Laser Soldering of Electronic Modules

Chapter 11. Laser Soldering of Electronic Modules

The primary types of lasers and laser diode systems used for assembly soldering are examined in detail. The technological features of laser soldering are presented for various types of contact connections in electronic modules, including bulk conductors, planar lead elements, chips, and device packages. By modeling the parameters of laser soldering, the optimal technological regimes for these processes have been determined. Laser radiation offers several advantages over infrared methods, including high localization of power in the heating zone, noninertial impact allowing for heating with short-duration pulses, precise dosing of emitted energy, and a minimal thermal effect zone. Soldered joints created through laser soldering exhibit a glossy surface, well-formed fillets, and enhanced strength properties. The ability to regulate flexibly and dose precisely the supplied energy enables the adjustment of temperature and soldering time over a wide range, enhancing the control and quality of the soldering process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface Engineering and Applied Electrochemistry
Surface Engineering and Applied Electrochemistry Engineering-Industrial and Manufacturing Engineering
CiteScore
1.60
自引率
22.20%
发文量
54
期刊介绍: Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信