静压转台性能监测系统:基于 IPSO-NN 模型的改进型智能算法

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Yongsheng Zhao, Jiaqing Luo, Ying Li, Caixia Zhang, Honglie Ma
{"title":"静压转台性能监测系统:基于 IPSO-NN 模型的改进型智能算法","authors":"Yongsheng Zhao, Jiaqing Luo, Ying Li, Caixia Zhang, Honglie Ma","doi":"10.1108/ilt-03-2024-0081","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The combination of improved PSO (IPSO) algorithm and artificial neural network (ANN) model for intelligent monitoring of the bearing performance of the hydrostatic turntable.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>This paper proposes an artificial neural network model based on IPSO algorithm for intelligent monitoring of hydrostatic turntables.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The theoretical model proposed in this paper improves the accuracy of the working performance of the static pressure turntable and provides a new direction for intelligent monitoring of the static pressure turntable. Therefore, the theoretical research in this paper is novel.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>Theoretical novelties: an ANN model based on the IPSO algorithm is designed to monitor the load-bearing performance of a static pressure turntable intelligently; this study show that the convergence accuracy and convergence speed of the IPSO-NN model have been improved by 52.55% and 10%, respectively, compared to traditional training models; and the proposed model could be used to solve the multidimensional nonlinear problem in the intelligent monitoring of hydrostatic turntables.</p><!--/ Abstract__block -->\n<h3>Peer review</h3>\n<p>The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2024-0081/</p><!--/ Abstract__block -->","PeriodicalId":13523,"journal":{"name":"Industrial Lubrication and Tribology","volume":"8 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The performance monitoring system for a hydrostatic turntable: an improved intelligent algorithm based on the IPSO-NN model\",\"authors\":\"Yongsheng Zhao, Jiaqing Luo, Ying Li, Caixia Zhang, Honglie Ma\",\"doi\":\"10.1108/ilt-03-2024-0081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>The combination of improved PSO (IPSO) algorithm and artificial neural network (ANN) model for intelligent monitoring of the bearing performance of the hydrostatic turntable.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>This paper proposes an artificial neural network model based on IPSO algorithm for intelligent monitoring of hydrostatic turntables.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The theoretical model proposed in this paper improves the accuracy of the working performance of the static pressure turntable and provides a new direction for intelligent monitoring of the static pressure turntable. Therefore, the theoretical research in this paper is novel.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>Theoretical novelties: an ANN model based on the IPSO algorithm is designed to monitor the load-bearing performance of a static pressure turntable intelligently; this study show that the convergence accuracy and convergence speed of the IPSO-NN model have been improved by 52.55% and 10%, respectively, compared to traditional training models; and the proposed model could be used to solve the multidimensional nonlinear problem in the intelligent monitoring of hydrostatic turntables.</p><!--/ Abstract__block -->\\n<h3>Peer review</h3>\\n<p>The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2024-0081/</p><!--/ Abstract__block -->\",\"PeriodicalId\":13523,\"journal\":{\"name\":\"Industrial Lubrication and Tribology\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Lubrication and Tribology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/ilt-03-2024-0081\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Lubrication and Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ilt-03-2024-0081","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的将改进的 PSO(IPSO)算法与人工神经网络(ANN)模型相结合,对静压转台的承载性能进行智能监测。研究结果本文提出的理论模型提高了静压转台工作性能的准确性,为静压转台的智能监测提供了新的方向。原创性/价值理论新颖性:设计了基于IPSO算法的ANN模型,对静压转台的承载性能进行智能监测;研究表明,IPSO-NN模型的收敛精度和收敛速度分别比IPSO-NN模型提高了52.55%和10%;提出的模型可用于解决静压转台智能监测中的多维非线性问题。同行评议本文的同行评议记录可在以下网址查阅:https://publons.com/publon/10.1108/ILT-03-2024-0081/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The performance monitoring system for a hydrostatic turntable: an improved intelligent algorithm based on the IPSO-NN model

Purpose

The combination of improved PSO (IPSO) algorithm and artificial neural network (ANN) model for intelligent monitoring of the bearing performance of the hydrostatic turntable.

Design/methodology/approach

This paper proposes an artificial neural network model based on IPSO algorithm for intelligent monitoring of hydrostatic turntables.

Findings

The theoretical model proposed in this paper improves the accuracy of the working performance of the static pressure turntable and provides a new direction for intelligent monitoring of the static pressure turntable. Therefore, the theoretical research in this paper is novel.

Originality/value

Theoretical novelties: an ANN model based on the IPSO algorithm is designed to monitor the load-bearing performance of a static pressure turntable intelligently; this study show that the convergence accuracy and convergence speed of the IPSO-NN model have been improved by 52.55% and 10%, respectively, compared to traditional training models; and the proposed model could be used to solve the multidimensional nonlinear problem in the intelligent monitoring of hydrostatic turntables.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2024-0081/

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial Lubrication and Tribology
Industrial Lubrication and Tribology 工程技术-工程:机械
CiteScore
3.00
自引率
18.80%
发文量
129
审稿时长
1.9 months
期刊介绍: Industrial Lubrication and Tribology provides a broad coverage of the materials and techniques employed in tribology. It contains a firm technical news element which brings together and promotes best practice in the three disciplines of tribology, which comprise lubrication, wear and friction. ILT also follows the progress of research into advanced lubricants, bearings, seals, gears and related machinery parts, as well as materials selection. A double-blind peer review process involving the editor and other subject experts ensures the content''s validity and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信