{"title":"翻译霍普夫代数和霍普夫堆","authors":"Tomasz Brzeziński, Małgorzata Hryniewicka","doi":"10.1007/s10468-024-10283-9","DOIUrl":null,"url":null,"abstract":"<div><p>To every Hopf heap or quantum cotorsor of Grunspan a Hopf algebra of translations is associated. This translation Hopf algebra acts on the Hopf heap making it a Hopf-Galois co-object. Conversely, any Hopf-Galois co-object has the natural structure of a Hopf heap with the translation Hopf algebra isomorphic to the acting Hopf algebra. It is then shown that this assignment establishes an equivalence between categories of Hopf heaps and Hopf-Galois co-objects.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 5","pages":"1805 - 1819"},"PeriodicalIF":0.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-024-10283-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Translation Hopf Algebras and Hopf Heaps\",\"authors\":\"Tomasz Brzeziński, Małgorzata Hryniewicka\",\"doi\":\"10.1007/s10468-024-10283-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To every Hopf heap or quantum cotorsor of Grunspan a Hopf algebra of translations is associated. This translation Hopf algebra acts on the Hopf heap making it a Hopf-Galois co-object. Conversely, any Hopf-Galois co-object has the natural structure of a Hopf heap with the translation Hopf algebra isomorphic to the acting Hopf algebra. It is then shown that this assignment establishes an equivalence between categories of Hopf heaps and Hopf-Galois co-objects.</p></div>\",\"PeriodicalId\":50825,\"journal\":{\"name\":\"Algebras and Representation Theory\",\"volume\":\"27 5\",\"pages\":\"1805 - 1819\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10468-024-10283-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebras and Representation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-024-10283-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10283-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
To every Hopf heap or quantum cotorsor of Grunspan a Hopf algebra of translations is associated. This translation Hopf algebra acts on the Hopf heap making it a Hopf-Galois co-object. Conversely, any Hopf-Galois co-object has the natural structure of a Hopf heap with the translation Hopf algebra isomorphic to the acting Hopf algebra. It is then shown that this assignment establishes an equivalence between categories of Hopf heaps and Hopf-Galois co-objects.
期刊介绍:
Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups.
The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.