Co/Cu 和 Co/W 多层膜的结构和磁特性对比分析

IF 1.1 4区 物理与天体物理 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
M. Tokaç
{"title":"Co/Cu 和 Co/W 多层膜的结构和磁特性对比分析","authors":"M. Tokaç","doi":"10.1007/s00723-024-01704-5","DOIUrl":null,"url":null,"abstract":"<div><p>Gilbert damping in symmetric Cu/Co/Cu and asymmetric Cu/Co/W multilayers was studied as a function of Co thickness using FMR linewidth measurements. W-capped multilayers showed higher intrinsic damping across all thicknesses, due to strong SOC in W, which enhances spin-pumping, and MDL formation at the Co/W interface, increasing spin-flip scattering. The higher spin-mixing conductance in W-capped multilayers is linked to stronger SOC and enhanced orbital hybridization at the Co/W interface. X-ray diffraction revealed an fcc(111) phase in Co layers up to 4 nm thick, with thicker films showing a mix of fcc(111) and hcp(0001) textures. The Co thin films showed saturation magnetizations near literature values. No dead layer was found in Cu-capped multilayers, however, a 0.3 nm MDL formed in W-capped multilayers due to atomic intermixing at the Co/W interface. FM/NM interfaces are crucial in generating and dissipating pure spin currents, and they significantly impact the damping properties through the influence of seed and capping layers.</p></div>","PeriodicalId":469,"journal":{"name":"Applied Magnetic Resonance","volume":"55 11","pages":"1389 - 1402"},"PeriodicalIF":1.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of Structural and Magnetic Properties in Co/Cu and Co/W Multilayers\",\"authors\":\"M. Tokaç\",\"doi\":\"10.1007/s00723-024-01704-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gilbert damping in symmetric Cu/Co/Cu and asymmetric Cu/Co/W multilayers was studied as a function of Co thickness using FMR linewidth measurements. W-capped multilayers showed higher intrinsic damping across all thicknesses, due to strong SOC in W, which enhances spin-pumping, and MDL formation at the Co/W interface, increasing spin-flip scattering. The higher spin-mixing conductance in W-capped multilayers is linked to stronger SOC and enhanced orbital hybridization at the Co/W interface. X-ray diffraction revealed an fcc(111) phase in Co layers up to 4 nm thick, with thicker films showing a mix of fcc(111) and hcp(0001) textures. The Co thin films showed saturation magnetizations near literature values. No dead layer was found in Cu-capped multilayers, however, a 0.3 nm MDL formed in W-capped multilayers due to atomic intermixing at the Co/W interface. FM/NM interfaces are crucial in generating and dissipating pure spin currents, and they significantly impact the damping properties through the influence of seed and capping layers.</p></div>\",\"PeriodicalId\":469,\"journal\":{\"name\":\"Applied Magnetic Resonance\",\"volume\":\"55 11\",\"pages\":\"1389 - 1402\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Magnetic Resonance\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00723-024-01704-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Magnetic Resonance","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00723-024-01704-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用调频辐射线宽测量法研究了对称 Cu/Co/Cu 和非对称 Cu/Co/W 多层板中的吉尔伯特阻尼与 Co 厚度的函数关系。由于 W 中的强 SOC 增强了自旋泵送,以及在 Co/W 界面形成的 MDL 增加了自旋翻转散射,因此 W 封层多层膜在所有厚度上都显示出更高的本征阻尼。W 标记多层膜中较高的自旋混合电导率与较强的 SOC 和 Co/W 界面上增强的轨道杂化有关。X 射线衍射显示,在厚度不超过 4 纳米的钴层中存在 fcc(111) 相,更厚的薄膜则显示出 fcc(111) 和 hcp(0001) 的混合纹理。钴薄膜显示出接近文献值的饱和磁化率。铜帽多层膜中未发现死层,但由于 Co/W 界面的原子混杂,在 W 帽多层膜中形成了 0.3 nm 的 MDL。FM/NM 界面对于纯自旋电流的产生和耗散至关重要,它们会通过种子层和封盖层的影响对阻尼特性产生重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparative Analysis of Structural and Magnetic Properties in Co/Cu and Co/W Multilayers

Comparative Analysis of Structural and Magnetic Properties in Co/Cu and Co/W Multilayers

Gilbert damping in symmetric Cu/Co/Cu and asymmetric Cu/Co/W multilayers was studied as a function of Co thickness using FMR linewidth measurements. W-capped multilayers showed higher intrinsic damping across all thicknesses, due to strong SOC in W, which enhances spin-pumping, and MDL formation at the Co/W interface, increasing spin-flip scattering. The higher spin-mixing conductance in W-capped multilayers is linked to stronger SOC and enhanced orbital hybridization at the Co/W interface. X-ray diffraction revealed an fcc(111) phase in Co layers up to 4 nm thick, with thicker films showing a mix of fcc(111) and hcp(0001) textures. The Co thin films showed saturation magnetizations near literature values. No dead layer was found in Cu-capped multilayers, however, a 0.3 nm MDL formed in W-capped multilayers due to atomic intermixing at the Co/W interface. FM/NM interfaces are crucial in generating and dissipating pure spin currents, and they significantly impact the damping properties through the influence of seed and capping layers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Magnetic Resonance
Applied Magnetic Resonance 物理-光谱学
CiteScore
1.90
自引率
10.00%
发文量
59
审稿时长
2.3 months
期刊介绍: Applied Magnetic Resonance provides an international forum for the application of magnetic resonance in physics, chemistry, biology, medicine, geochemistry, ecology, engineering, and related fields. The contents include articles with a strong emphasis on new applications, and on new experimental methods. Additional features include book reviews and Letters to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信