Oscar Schofield, Megan Cimino, Scott Doney, Ari Friedlaender, Michael Meredith, Carlos Moffat, Sharon Stammerjohn, Benjamin Van Mooy, Deborah Steinberg
{"title":"地球变暖背景下的南极水层生态系统","authors":"Oscar Schofield, Megan Cimino, Scott Doney, Ari Friedlaender, Michael Meredith, Carlos Moffat, Sharon Stammerjohn, Benjamin Van Mooy, Deborah Steinberg","doi":"10.1016/j.tree.2024.08.007","DOIUrl":null,"url":null,"abstract":"<p>High-latitude pelagic marine ecosystems are vulnerable to climate change because of the intertwining of sea/continental ice dynamics, physics, biogeochemistry, and food-web structure. Data from the West Antarctic Peninsula allow us to assess how ice influences marine food webs by modulating solar inputs to the ocean, inhibiting wind mixing, altering the freshwater balance and ocean stability, and providing a physical substrate for organisms. State changes are linked to an increase in storm forcing and changing distribution of ocean heat. Changes ripple through the plankton, shifting the magnitude of primary production and its community composition, altering the abundance of krill and other prey essential for marine mammals and seabirds. These climate-driven changes in the food web are being exacerbated by human activity.</p>","PeriodicalId":23274,"journal":{"name":"Trends in ecology & evolution","volume":"48 1","pages":""},"PeriodicalIF":16.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antarctic pelagic ecosystems on a warming planet\",\"authors\":\"Oscar Schofield, Megan Cimino, Scott Doney, Ari Friedlaender, Michael Meredith, Carlos Moffat, Sharon Stammerjohn, Benjamin Van Mooy, Deborah Steinberg\",\"doi\":\"10.1016/j.tree.2024.08.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High-latitude pelagic marine ecosystems are vulnerable to climate change because of the intertwining of sea/continental ice dynamics, physics, biogeochemistry, and food-web structure. Data from the West Antarctic Peninsula allow us to assess how ice influences marine food webs by modulating solar inputs to the ocean, inhibiting wind mixing, altering the freshwater balance and ocean stability, and providing a physical substrate for organisms. State changes are linked to an increase in storm forcing and changing distribution of ocean heat. Changes ripple through the plankton, shifting the magnitude of primary production and its community composition, altering the abundance of krill and other prey essential for marine mammals and seabirds. These climate-driven changes in the food web are being exacerbated by human activity.</p>\",\"PeriodicalId\":23274,\"journal\":{\"name\":\"Trends in ecology & evolution\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":16.7000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in ecology & evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tree.2024.08.007\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tree.2024.08.007","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
High-latitude pelagic marine ecosystems are vulnerable to climate change because of the intertwining of sea/continental ice dynamics, physics, biogeochemistry, and food-web structure. Data from the West Antarctic Peninsula allow us to assess how ice influences marine food webs by modulating solar inputs to the ocean, inhibiting wind mixing, altering the freshwater balance and ocean stability, and providing a physical substrate for organisms. State changes are linked to an increase in storm forcing and changing distribution of ocean heat. Changes ripple through the plankton, shifting the magnitude of primary production and its community composition, altering the abundance of krill and other prey essential for marine mammals and seabirds. These climate-driven changes in the food web are being exacerbated by human activity.
期刊介绍:
Trends in Ecology & Evolution (TREE) is a comprehensive journal featuring polished, concise, and readable reviews, opinions, and letters in all areas of ecology and evolutionary science. Catering to researchers, lecturers, teachers, field workers, and students, it serves as a valuable source of information. The journal keeps scientists informed about new developments and ideas across the spectrum of ecology and evolutionary biology, spanning from pure to applied and molecular to global perspectives. In the face of global environmental change, Trends in Ecology & Evolution plays a crucial role in covering all significant issues concerning organisms and their environments, making it a major forum for life scientists.