厌氧产酸的改善和法定人数感应的发酵型调控

IF 7.4 Q1 ENGINEERING, ENVIRONMENTAL
Shunan Zhao, Ge Song, Suo Liu, Jing Zhao, Kai Zhao, Shaoqing Zhu, Yufei Zeng, Ruiping Liu, Huijuan Liu, Jiuhui Qu
{"title":"厌氧产酸的改善和法定人数感应的发酵型调控","authors":"Shunan Zhao, Ge Song, Suo Liu, Jing Zhao, Kai Zhao, Shaoqing Zhu, Yufei Zeng, Ruiping Liu, Huijuan Liu, Jiuhui Qu","doi":"10.1021/acsestengg.4c00220","DOIUrl":null,"url":null,"abstract":"Anaerobic fermentation of organic wastewater is expected to produce short-chain fatty acids that are available as carbon sources for nitrogen and phosphorus removal in wastewater treatment. By long-term semicontinuous experiments, this study indicated that the introduction of exogenous <i>N</i>-acyl-homoserine lactone (AHL), a quorum sensing (QS) molecule, improved acidogenesis capacity and regulated fermentation type even at low pH. The product concentration increased from 13.5 gCOD/L in the control to 19.9 gCOD/L in the QS enhancement system. Moreover, the acidogenesis pathway related to acetyl-CoA, butyrate, and caproate production was also more highly expressed based on metagenomic sequencing accordingly. Notably, the introduction of exogenous AHL improved chain elongation (CE) during anaerobic fermentation and resulted in a 2.6-fold increase in caproate concentrations. Additionally, the abundance of caproate producers was also increased by 2.0–3.6 folds in the QS enhancement system. Metagenomic analysis results indicated that QS boosted the reverse β-oxidation pathways, and the higher acidogenesis pathway provided more lactate and butyrate available for CE. Importantly, QS enhancement upregulated genes associated with the detection of the typical acid stress signal. Concurrently, three typical acid stress resistance pathways, i.e., proton-consuming reactions, protons efflux, and extracellular polymeric substance production, were activated and highly expressed. Overall, this study proposes a novel strategy to improve microbial resistance to acidic conditions and to regulate the microbial community through QS enhancement and is potentially valuable to enhance resources and energy recovery by anaerobic fermentation.","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anaerobic Acidogenesis Improvement and Fermentation-Type Regulation by Quorum Sensing\",\"authors\":\"Shunan Zhao, Ge Song, Suo Liu, Jing Zhao, Kai Zhao, Shaoqing Zhu, Yufei Zeng, Ruiping Liu, Huijuan Liu, Jiuhui Qu\",\"doi\":\"10.1021/acsestengg.4c00220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anaerobic fermentation of organic wastewater is expected to produce short-chain fatty acids that are available as carbon sources for nitrogen and phosphorus removal in wastewater treatment. By long-term semicontinuous experiments, this study indicated that the introduction of exogenous <i>N</i>-acyl-homoserine lactone (AHL), a quorum sensing (QS) molecule, improved acidogenesis capacity and regulated fermentation type even at low pH. The product concentration increased from 13.5 gCOD/L in the control to 19.9 gCOD/L in the QS enhancement system. Moreover, the acidogenesis pathway related to acetyl-CoA, butyrate, and caproate production was also more highly expressed based on metagenomic sequencing accordingly. Notably, the introduction of exogenous AHL improved chain elongation (CE) during anaerobic fermentation and resulted in a 2.6-fold increase in caproate concentrations. Additionally, the abundance of caproate producers was also increased by 2.0–3.6 folds in the QS enhancement system. Metagenomic analysis results indicated that QS boosted the reverse β-oxidation pathways, and the higher acidogenesis pathway provided more lactate and butyrate available for CE. Importantly, QS enhancement upregulated genes associated with the detection of the typical acid stress signal. Concurrently, three typical acid stress resistance pathways, i.e., proton-consuming reactions, protons efflux, and extracellular polymeric substance production, were activated and highly expressed. Overall, this study proposes a novel strategy to improve microbial resistance to acidic conditions and to regulate the microbial community through QS enhancement and is potentially valuable to enhance resources and energy recovery by anaerobic fermentation.\",\"PeriodicalId\":7008,\"journal\":{\"name\":\"ACS ES&T engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsestengg.4c00220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsestengg.4c00220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

有机废水厌氧发酵有望产生短链脂肪酸,可作为废水处理中脱氮除磷的碳源。本研究通过长期半连续实验表明,引入外源 N-酰基-高丝氨酸内酯(一种法定量传感(QS)分子)可提高产酸能力,即使在低 pH 值条件下也能调节发酵类型。在 QS 增强系统中,产物浓度从对照组的 13.5 gCOD/L 增加到 19.9 gCOD/L。此外,根据元基因组测序,与乙酰-CoA、丁酸盐和己酸盐生产相关的产酸途径也得到了更高的表达。值得注意的是,引入外源 AHL 改善了厌氧发酵过程中的链延伸(CE),使己酸盐浓度增加了 2.6 倍。此外,在 QS 增强系统中,己酸盐生产者的丰度也增加了 2.0-3.6 倍。元基因组分析结果表明,QS 促进了反β-氧化途径,而更高的酸生成途径为 CE 提供了更多的乳酸和丁酸。重要的是,QS 增强上调了与检测典型酸应激信号相关的基因。同时,三个典型的抗酸胁迫途径,即质子消耗反应、质子外流和细胞外聚合物质产生,被激活并高表达。总之,这项研究提出了一种新的策略,即通过增强 QS 来提高微生物对酸性条件的抵抗力和调节微生物群落,这对提高厌氧发酵的资源和能量回收具有潜在价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Anaerobic Acidogenesis Improvement and Fermentation-Type Regulation by Quorum Sensing

Anaerobic Acidogenesis Improvement and Fermentation-Type Regulation by Quorum Sensing
Anaerobic fermentation of organic wastewater is expected to produce short-chain fatty acids that are available as carbon sources for nitrogen and phosphorus removal in wastewater treatment. By long-term semicontinuous experiments, this study indicated that the introduction of exogenous N-acyl-homoserine lactone (AHL), a quorum sensing (QS) molecule, improved acidogenesis capacity and regulated fermentation type even at low pH. The product concentration increased from 13.5 gCOD/L in the control to 19.9 gCOD/L in the QS enhancement system. Moreover, the acidogenesis pathway related to acetyl-CoA, butyrate, and caproate production was also more highly expressed based on metagenomic sequencing accordingly. Notably, the introduction of exogenous AHL improved chain elongation (CE) during anaerobic fermentation and resulted in a 2.6-fold increase in caproate concentrations. Additionally, the abundance of caproate producers was also increased by 2.0–3.6 folds in the QS enhancement system. Metagenomic analysis results indicated that QS boosted the reverse β-oxidation pathways, and the higher acidogenesis pathway provided more lactate and butyrate available for CE. Importantly, QS enhancement upregulated genes associated with the detection of the typical acid stress signal. Concurrently, three typical acid stress resistance pathways, i.e., proton-consuming reactions, protons efflux, and extracellular polymeric substance production, were activated and highly expressed. Overall, this study proposes a novel strategy to improve microbial resistance to acidic conditions and to regulate the microbial community through QS enhancement and is potentially valuable to enhance resources and energy recovery by anaerobic fermentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS ES&T engineering
ACS ES&T engineering ENGINEERING, ENVIRONMENTAL-
CiteScore
8.50
自引率
0.00%
发文量
0
期刊介绍: ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources. The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope. Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信