C. A. Aguirre, Julián Faúndez, P. Díaz, D. Laroze, J. Barba-Ortega
{"title":"单带和双带超导异质结构中的邻近效应:随时间变化的金兹堡-朗道方法","authors":"C. A. Aguirre, Julián Faúndez, P. Díaz, D. Laroze, J. Barba-Ortega","doi":"10.1007/s10909-024-03197-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we study the proximity effects in a single- and two-band superconducting three-dimensional heterostructure, described by two condensates (condensate 1 and condensate 2) in the presence of an external magnetic field perpendicular to the heterostructure. The distance between the interfaces of both condensates is given by the parameter <span>\\(\\lambda '\\)</span>. We solve the time-dependent Ginzburg-Landau equations considering a Josephson-like coupling to explore properties such as magnetization, Gibbs free energy, and the Abrikosov vortex state. We propose three cases: case 1, both condensates are composed of a single-band; case 2, the condensates are composed of two bands; and case 3, condensate 1 has a single-band and condensate 2 has two bands. As a result, we highlight the variation of the first critical field and the novel vortex configurations induced by the proximity effect between the superconducting condensates. This phenomenon substantially influences the arrangement of vortices in each of the superconducting bands.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proximity Effects in Single- and Two-Band Superconducting Heterostructures: A Time-Dependent Ginzburg-Landau Approach\",\"authors\":\"C. A. Aguirre, Julián Faúndez, P. Díaz, D. Laroze, J. Barba-Ortega\",\"doi\":\"10.1007/s10909-024-03197-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we study the proximity effects in a single- and two-band superconducting three-dimensional heterostructure, described by two condensates (condensate 1 and condensate 2) in the presence of an external magnetic field perpendicular to the heterostructure. The distance between the interfaces of both condensates is given by the parameter <span>\\\\(\\\\lambda '\\\\)</span>. We solve the time-dependent Ginzburg-Landau equations considering a Josephson-like coupling to explore properties such as magnetization, Gibbs free energy, and the Abrikosov vortex state. We propose three cases: case 1, both condensates are composed of a single-band; case 2, the condensates are composed of two bands; and case 3, condensate 1 has a single-band and condensate 2 has two bands. As a result, we highlight the variation of the first critical field and the novel vortex configurations induced by the proximity effect between the superconducting condensates. This phenomenon substantially influences the arrangement of vortices in each of the superconducting bands.</p></div>\",\"PeriodicalId\":641,\"journal\":{\"name\":\"Journal of Low Temperature Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Temperature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10909-024-03197-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-024-03197-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Proximity Effects in Single- and Two-Band Superconducting Heterostructures: A Time-Dependent Ginzburg-Landau Approach
In this work, we study the proximity effects in a single- and two-band superconducting three-dimensional heterostructure, described by two condensates (condensate 1 and condensate 2) in the presence of an external magnetic field perpendicular to the heterostructure. The distance between the interfaces of both condensates is given by the parameter \(\lambda '\). We solve the time-dependent Ginzburg-Landau equations considering a Josephson-like coupling to explore properties such as magnetization, Gibbs free energy, and the Abrikosov vortex state. We propose three cases: case 1, both condensates are composed of a single-band; case 2, the condensates are composed of two bands; and case 3, condensate 1 has a single-band and condensate 2 has two bands. As a result, we highlight the variation of the first critical field and the novel vortex configurations induced by the proximity effect between the superconducting condensates. This phenomenon substantially influences the arrangement of vortices in each of the superconducting bands.
期刊介绍:
The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.