{"title":"用于全向电催化水分离的 Anatase-Rutile TiO2@V4C3Tx MXene","authors":"Neermunda Shabana, Punnoli Muhsin, Ya‐Yun Yang, Pi‐Tai Chou","doi":"10.1002/admi.202400597","DOIUrl":null,"url":null,"abstract":"The quest for composite materials with unique features that each component, inherently, does not have is always an aspirational but challenging task. Among Transition metal oxides (TMOs), TiO<jats:sub>2</jats:sub> emerged as a prototype due to its earth abundance, environmental friendliness, and cost‐effectiveness, which has shown high activity for photocatalytic hydrogen evolution. Unfortunately, TiO<jats:sub>2</jats:sub> is inert for electrocatalytic hydrogen evolution reaction (HER) because it has poor electrical conductivity and unfavorable hydrogen adsorption/desorption behavior. Herein the revitalization of inert TiO<jats:sub>2</jats:sub> for overall water splitting, i.e., both HER and oxygen evolution reaction (OER) is reported by anchoring rutile‐anatase (a/r) TiO<jats:sub>2</jats:sub> nanoparticles on the ‐OH/‐F terminated V<jats:sub>4</jats:sub>C<jats:sub>3</jats:sub>T<jats:sub>x</jats:sub> MXene, giving an a/r TiO<jats:sub>2</jats:sub>@V<jats:sub>4</jats:sub>C<jats:sub>3</jats:sub>T<jats:sub>x</jats:sub> heterostructure. The synergetic effect showcases remarkable pH‐independent HER activity with an overpotential of 35, 39, and 82 mV in 0.5 <jats:sc>m</jats:sc> H<jats:sub>2</jats:sub>SO<jats:sub>4</jats:sub>, 1 <jats:sc>m</jats:sc> KOH, and 1 <jats:sc>m</jats:sc> phosphate‐buffered saline (PBS) respectively. The catalyst also exhibits a pH‐independent OER activity with the lowest overpotential of 217, 267, and 292 mV in 1 <jats:sc>m</jats:sc> KOH, 0.5 <jats:sc>m</jats:sc> H<jats:sub>2</jats:sub>SO<jats:sub>4</jats:sub>, and 1 <jats:sc>m</jats:sc> PBS respectively, that outperforms pure TiO<jats:sub>2</jats:sub>. These findings, for the first time, support the success of anatase‐rutile TiO<jats:sub>2</jats:sub>@V<jats:sub>4</jats:sub>C<jats:sub>3</jats:sub>T<jats:sub>x</jats:sub> MXene in omnidirectional performance, with low overpotential and pH independence, which pave an avenue for finding cost‐effective catalysts in overall water splitting.","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"31 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anatase‐Rutile TiO2@V4C3Tx MXene for Omnidirectional Electrocatalytic Water Splitting\",\"authors\":\"Neermunda Shabana, Punnoli Muhsin, Ya‐Yun Yang, Pi‐Tai Chou\",\"doi\":\"10.1002/admi.202400597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quest for composite materials with unique features that each component, inherently, does not have is always an aspirational but challenging task. Among Transition metal oxides (TMOs), TiO<jats:sub>2</jats:sub> emerged as a prototype due to its earth abundance, environmental friendliness, and cost‐effectiveness, which has shown high activity for photocatalytic hydrogen evolution. Unfortunately, TiO<jats:sub>2</jats:sub> is inert for electrocatalytic hydrogen evolution reaction (HER) because it has poor electrical conductivity and unfavorable hydrogen adsorption/desorption behavior. Herein the revitalization of inert TiO<jats:sub>2</jats:sub> for overall water splitting, i.e., both HER and oxygen evolution reaction (OER) is reported by anchoring rutile‐anatase (a/r) TiO<jats:sub>2</jats:sub> nanoparticles on the ‐OH/‐F terminated V<jats:sub>4</jats:sub>C<jats:sub>3</jats:sub>T<jats:sub>x</jats:sub> MXene, giving an a/r TiO<jats:sub>2</jats:sub>@V<jats:sub>4</jats:sub>C<jats:sub>3</jats:sub>T<jats:sub>x</jats:sub> heterostructure. The synergetic effect showcases remarkable pH‐independent HER activity with an overpotential of 35, 39, and 82 mV in 0.5 <jats:sc>m</jats:sc> H<jats:sub>2</jats:sub>SO<jats:sub>4</jats:sub>, 1 <jats:sc>m</jats:sc> KOH, and 1 <jats:sc>m</jats:sc> phosphate‐buffered saline (PBS) respectively. The catalyst also exhibits a pH‐independent OER activity with the lowest overpotential of 217, 267, and 292 mV in 1 <jats:sc>m</jats:sc> KOH, 0.5 <jats:sc>m</jats:sc> H<jats:sub>2</jats:sub>SO<jats:sub>4</jats:sub>, and 1 <jats:sc>m</jats:sc> PBS respectively, that outperforms pure TiO<jats:sub>2</jats:sub>. These findings, for the first time, support the success of anatase‐rutile TiO<jats:sub>2</jats:sub>@V<jats:sub>4</jats:sub>C<jats:sub>3</jats:sub>T<jats:sub>x</jats:sub> MXene in omnidirectional performance, with low overpotential and pH independence, which pave an avenue for finding cost‐effective catalysts in overall water splitting.\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/admi.202400597\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/admi.202400597","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
寻求具有每个成分本身所不具备的独特功能的复合材料一直是一项令人向往但又充满挑战的任务。在过渡金属氧化物(TMOs)中,TiO2 因其丰富的地球资源、环境友好性和成本效益而成为一种原型,在光催化氢进化方面显示出很高的活性。遗憾的是,TiO2 在电催化氢气进化反应(HER)中是惰性的,因为它导电性差,对氢气的吸附/解吸行为不利。本文报告了通过将金红石-金红石(a/r)TiO2 纳米颗粒锚定在-OH/-F 端的 V4C3Tx MXene 上,产生 a/r TiO2@V4C3Tx 异质结构,从而使惰性 TiO2 重新焕发活力,用于整体水分离,即同时进行氢进化反应和氧进化反应(OER)。这种协同效应显示出与 pH 值无关的显著 HER 活性,在 0.5 m H2SO4、1 m KOH 和 1 m 磷酸盐缓冲盐水(PBS)中的过电位分别为 35、39 和 82 mV。该催化剂还表现出与 pH 值无关的 OER 活性,在 1 m KOH、0.5 m H2SO4 和 1 m PBS 中的最低过电位分别为 217、267 和 292 mV,优于纯 TiO2。这些研究结果首次证明了锐钛矿中性 TiO2@V4C3Tx MXene 在全向性能、低过电位和不受 pH 值影响方面的成功,这为寻找具有成本效益的整体水分离催化剂铺平了道路。
Anatase‐Rutile TiO2@V4C3Tx MXene for Omnidirectional Electrocatalytic Water Splitting
The quest for composite materials with unique features that each component, inherently, does not have is always an aspirational but challenging task. Among Transition metal oxides (TMOs), TiO2 emerged as a prototype due to its earth abundance, environmental friendliness, and cost‐effectiveness, which has shown high activity for photocatalytic hydrogen evolution. Unfortunately, TiO2 is inert for electrocatalytic hydrogen evolution reaction (HER) because it has poor electrical conductivity and unfavorable hydrogen adsorption/desorption behavior. Herein the revitalization of inert TiO2 for overall water splitting, i.e., both HER and oxygen evolution reaction (OER) is reported by anchoring rutile‐anatase (a/r) TiO2 nanoparticles on the ‐OH/‐F terminated V4C3Tx MXene, giving an a/r TiO2@V4C3Tx heterostructure. The synergetic effect showcases remarkable pH‐independent HER activity with an overpotential of 35, 39, and 82 mV in 0.5 m H2SO4, 1 m KOH, and 1 m phosphate‐buffered saline (PBS) respectively. The catalyst also exhibits a pH‐independent OER activity with the lowest overpotential of 217, 267, and 292 mV in 1 m KOH, 0.5 m H2SO4, and 1 m PBS respectively, that outperforms pure TiO2. These findings, for the first time, support the success of anatase‐rutile TiO2@V4C3Tx MXene in omnidirectional performance, with low overpotential and pH independence, which pave an avenue for finding cost‐effective catalysts in overall water splitting.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.