金纳米粒子-全色 VO2 薄膜混合平台中的等离子共振偏移:实验与数值联合研究

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Grégory Savorianakis, Cédric Rousseau, Anastasiya Sergievskaya, Gilles Rosolen, Michel Voué, Bjorn Maes, S. Konstantinidis
{"title":"金纳米粒子-全色 VO2 薄膜混合平台中的等离子共振偏移:实验与数值联合研究","authors":"Grégory Savorianakis,&nbsp;Cédric Rousseau,&nbsp;Anastasiya Sergievskaya,&nbsp;Gilles Rosolen,&nbsp;Michel Voué,&nbsp;Bjorn Maes,&nbsp;S. Konstantinidis","doi":"10.1002/admi.202400172","DOIUrl":null,"url":null,"abstract":"<p>The combination of the phase transition in thermochromic vanadium dioxide (VO<sub>2</sub>) with plasmonic nanoparticles paves the way for applications in various fields, including optical sensing, advanced coatings, and dynamic optical devices. This study presents a simple fabrication method to control both the size and surface coverage of NPs combined with VO<sub>2</sub>. First, a thermochromic VO<sub>2</sub> coating with a phase transition at 68 °C is synthesized using reactive magnetron sputtering. Then, monodisperse 30 nm diameter gold NPs are bonded to the VO<sub>2</sub> surface using (3-aminopropyl)trimethoxysilane (APTMS) linkers, examining the effect of immersion duration on surface coverage. Two platforms are developed: a VO<sub>2</sub> thin film with a monolayer of NPs and a configuration with NPs between two VO<sub>2</sub> films. The temperature-dependent plasmonic response of these platforms is measured by extinction spectroscopy, showing a significant wavelength resonance shift of approximately 10 nm for the first platform and 20 nm for the second. Optical simulations analyze this shift over various geometries, from isolated NPs to fully covered NPs, achieving a 60 nm shift for NPs embedded in a thin VO<sub>2</sub> film. This study demonstrates an effective approach to synthesizing thermochromic VO<sub>2</sub> coatings with gold NPs, offering insights into the plasmonic properties of hybrid platforms.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"11 28","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400172","citationCount":"0","resultStr":"{\"title\":\"Plasmonic Resonance Shifts in Gold Nanoparticles-Thermochromic VO2 Thin Film Hybrid Platforms: A Joint Experimental and Numerical Study\",\"authors\":\"Grégory Savorianakis,&nbsp;Cédric Rousseau,&nbsp;Anastasiya Sergievskaya,&nbsp;Gilles Rosolen,&nbsp;Michel Voué,&nbsp;Bjorn Maes,&nbsp;S. Konstantinidis\",\"doi\":\"10.1002/admi.202400172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The combination of the phase transition in thermochromic vanadium dioxide (VO<sub>2</sub>) with plasmonic nanoparticles paves the way for applications in various fields, including optical sensing, advanced coatings, and dynamic optical devices. This study presents a simple fabrication method to control both the size and surface coverage of NPs combined with VO<sub>2</sub>. First, a thermochromic VO<sub>2</sub> coating with a phase transition at 68 °C is synthesized using reactive magnetron sputtering. Then, monodisperse 30 nm diameter gold NPs are bonded to the VO<sub>2</sub> surface using (3-aminopropyl)trimethoxysilane (APTMS) linkers, examining the effect of immersion duration on surface coverage. Two platforms are developed: a VO<sub>2</sub> thin film with a monolayer of NPs and a configuration with NPs between two VO<sub>2</sub> films. The temperature-dependent plasmonic response of these platforms is measured by extinction spectroscopy, showing a significant wavelength resonance shift of approximately 10 nm for the first platform and 20 nm for the second. Optical simulations analyze this shift over various geometries, from isolated NPs to fully covered NPs, achieving a 60 nm shift for NPs embedded in a thin VO<sub>2</sub> film. This study demonstrates an effective approach to synthesizing thermochromic VO<sub>2</sub> coatings with gold NPs, offering insights into the plasmonic properties of hybrid platforms.</p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"11 28\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400172\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400172\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400172","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

热致变色二氧化钒(VO2)的相变与等离子纳米粒子的结合为其在光学传感、先进涂层和动态光学器件等多个领域的应用铺平了道路。本研究提出了一种简单的制备方法来控制与 VO2 结合的 NPs 的尺寸和表面覆盖率。首先,利用反应磁控溅射合成了一种在 68 °C 时发生相变的热致变色 VO2 涂层。然后,使用 (3-aminopropyl)trimethoxysilane (APTMS) 链接剂将直径为 30 nm 的单分散金 NPs 粘合到 VO2 表面,并研究了浸泡时间对表面覆盖率的影响。我们开发了两种平台:一种是带有单层 NPs 的 VO2 薄膜,另一种是在两层 VO2 薄膜之间配置 NPs。通过消光光谱法测量了这些平台随温度变化的等离子响应,结果表明第一个平台和第二个平台的波长共振分别发生了约 10 nm 和 20 nm 的显著偏移。光学模拟分析了从孤立的 NPs 到完全覆盖的 NPs 等各种几何形状下的波长偏移,发现嵌入 VO2 薄膜的 NPs 的波长偏移为 60 nm。这项研究展示了一种合成带有金 NPs 的热致变色 VO2 涂层的有效方法,为了解混合平台的质子特性提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Plasmonic Resonance Shifts in Gold Nanoparticles-Thermochromic VO2 Thin Film Hybrid Platforms: A Joint Experimental and Numerical Study

Plasmonic Resonance Shifts in Gold Nanoparticles-Thermochromic VO2 Thin Film Hybrid Platforms: A Joint Experimental and Numerical Study

Plasmonic Resonance Shifts in Gold Nanoparticles-Thermochromic VO2 Thin Film Hybrid Platforms: A Joint Experimental and Numerical Study

The combination of the phase transition in thermochromic vanadium dioxide (VO2) with plasmonic nanoparticles paves the way for applications in various fields, including optical sensing, advanced coatings, and dynamic optical devices. This study presents a simple fabrication method to control both the size and surface coverage of NPs combined with VO2. First, a thermochromic VO2 coating with a phase transition at 68 °C is synthesized using reactive magnetron sputtering. Then, monodisperse 30 nm diameter gold NPs are bonded to the VO2 surface using (3-aminopropyl)trimethoxysilane (APTMS) linkers, examining the effect of immersion duration on surface coverage. Two platforms are developed: a VO2 thin film with a monolayer of NPs and a configuration with NPs between two VO2 films. The temperature-dependent plasmonic response of these platforms is measured by extinction spectroscopy, showing a significant wavelength resonance shift of approximately 10 nm for the first platform and 20 nm for the second. Optical simulations analyze this shift over various geometries, from isolated NPs to fully covered NPs, achieving a 60 nm shift for NPs embedded in a thin VO2 film. This study demonstrates an effective approach to synthesizing thermochromic VO2 coatings with gold NPs, offering insights into the plasmonic properties of hybrid platforms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信