Alexander F Mason, Shelley FJ Wickham, Matthew AB Baker
{"title":"DIB-BOT:用于平板集成液滴界面双层沉积的开源硬件方法","authors":"Alexander F Mason, Shelley FJ Wickham, Matthew AB Baker","doi":"10.1002/admi.202400413","DOIUrl":null,"url":null,"abstract":"Droplet interface bilayers (DIBs) offer a controlled lipid environment for studying membrane‐bound processes, with applications in artificial cells, biosensing, and biophysics. Current DIB fabrication faces challenges due to time‐consuming processes and specialized equipment, limiting scale‐up and hindering statistical significance in single‐molecule assays. This research introduces “DIB‐BOT,” an open‐source solution combining a nanoinjector and a 3D printer. DIB‐BOT enables rapid, reproducible DIB fabrication, overcoming manual limitations. Using off‐the‐shelf components, DIB‐BOT ensures high spatial reproducibility, minimal user input, and scalable experiments. The system's utility is demonstrated through pairwise droplet assembly and a fluorescence plate‐reader assay. Compared to manual fabrication, DIB‐BOT shows a 10‐fold reduction in droplet volume error, a threefold reduction in positional error, and 100% droplet yield. This method lowers entry barriers to DIB research, expanding its applications and enhancing data quality.","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"15 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DIB‐BOT: An Open‐Source Hardware Approach for Plate‐Integrated Droplet Interface Bilayer Deposition\",\"authors\":\"Alexander F Mason, Shelley FJ Wickham, Matthew AB Baker\",\"doi\":\"10.1002/admi.202400413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Droplet interface bilayers (DIBs) offer a controlled lipid environment for studying membrane‐bound processes, with applications in artificial cells, biosensing, and biophysics. Current DIB fabrication faces challenges due to time‐consuming processes and specialized equipment, limiting scale‐up and hindering statistical significance in single‐molecule assays. This research introduces “DIB‐BOT,” an open‐source solution combining a nanoinjector and a 3D printer. DIB‐BOT enables rapid, reproducible DIB fabrication, overcoming manual limitations. Using off‐the‐shelf components, DIB‐BOT ensures high spatial reproducibility, minimal user input, and scalable experiments. The system's utility is demonstrated through pairwise droplet assembly and a fluorescence plate‐reader assay. Compared to manual fabrication, DIB‐BOT shows a 10‐fold reduction in droplet volume error, a threefold reduction in positional error, and 100% droplet yield. This method lowers entry barriers to DIB research, expanding its applications and enhancing data quality.\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/admi.202400413\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/admi.202400413","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
DIB‐BOT: An Open‐Source Hardware Approach for Plate‐Integrated Droplet Interface Bilayer Deposition
Droplet interface bilayers (DIBs) offer a controlled lipid environment for studying membrane‐bound processes, with applications in artificial cells, biosensing, and biophysics. Current DIB fabrication faces challenges due to time‐consuming processes and specialized equipment, limiting scale‐up and hindering statistical significance in single‐molecule assays. This research introduces “DIB‐BOT,” an open‐source solution combining a nanoinjector and a 3D printer. DIB‐BOT enables rapid, reproducible DIB fabrication, overcoming manual limitations. Using off‐the‐shelf components, DIB‐BOT ensures high spatial reproducibility, minimal user input, and scalable experiments. The system's utility is demonstrated through pairwise droplet assembly and a fluorescence plate‐reader assay. Compared to manual fabrication, DIB‐BOT shows a 10‐fold reduction in droplet volume error, a threefold reduction in positional error, and 100% droplet yield. This method lowers entry barriers to DIB research, expanding its applications and enhancing data quality.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.