Kelly Turner, Gerard Colston, Katarzyna Stokeley, Andrew Newton, Arne Renz, Marina Antoniou, Peter Gammon, Philip Mawby, Vishal Shah
{"title":"使用三氯硅烷和氯化氢的 Mesa 侧壁角度对 4H 碳化硅沟槽填充外延的影响","authors":"Kelly Turner, Gerard Colston, Katarzyna Stokeley, Andrew Newton, Arne Renz, Marina Antoniou, Peter Gammon, Philip Mawby, Vishal Shah","doi":"10.1002/admi.202400466","DOIUrl":null,"url":null,"abstract":"<p>In this report, the advanced manufacturing advantages of using supersaturated chlorinated chemistry are demonstrated at 1550 °C in 4H-silicon carbide (4H-SiC) epitaxy on trenches with different geometric profiles. Sloped mesa sidewalls (8°) show improved filling behavior compared with vertical sidewalls (2°) and lower the optimum chlorine/silicon ratio (Si:Cl) required to complete filling. Both the optimum Cl:Si ratio (10) and sidewall angle are lower for wider trench openings, allowing complete fill of 3 µm wide trenches (8 µm pitch, 5 µm depth) at a filling rate of 19 µm h<sup>−1</sup>. Excessive hydrogen chloride (HCl) diminishes filling by reducing sidewall growth and can also produce an end surface with very rough topography. This work demonstrates the importance of trench geometry on both the filling behavior and process optimization in chlorinated trench filling epitaxy for the manufacture of 4H-SiC superjunction power electronics.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"11 33","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400466","citationCount":"0","resultStr":"{\"title\":\"Effect of Mesa Sidewall Angle on 4H-Silicon Carbide Trench Filling Epitaxy Using Trichlorosilane and Hydrogen Chloride\",\"authors\":\"Kelly Turner, Gerard Colston, Katarzyna Stokeley, Andrew Newton, Arne Renz, Marina Antoniou, Peter Gammon, Philip Mawby, Vishal Shah\",\"doi\":\"10.1002/admi.202400466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this report, the advanced manufacturing advantages of using supersaturated chlorinated chemistry are demonstrated at 1550 °C in 4H-silicon carbide (4H-SiC) epitaxy on trenches with different geometric profiles. Sloped mesa sidewalls (8°) show improved filling behavior compared with vertical sidewalls (2°) and lower the optimum chlorine/silicon ratio (Si:Cl) required to complete filling. Both the optimum Cl:Si ratio (10) and sidewall angle are lower for wider trench openings, allowing complete fill of 3 µm wide trenches (8 µm pitch, 5 µm depth) at a filling rate of 19 µm h<sup>−1</sup>. Excessive hydrogen chloride (HCl) diminishes filling by reducing sidewall growth and can also produce an end surface with very rough topography. This work demonstrates the importance of trench geometry on both the filling behavior and process optimization in chlorinated trench filling epitaxy for the manufacture of 4H-SiC superjunction power electronics.</p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"11 33\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400466\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400466\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400466","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of Mesa Sidewall Angle on 4H-Silicon Carbide Trench Filling Epitaxy Using Trichlorosilane and Hydrogen Chloride
In this report, the advanced manufacturing advantages of using supersaturated chlorinated chemistry are demonstrated at 1550 °C in 4H-silicon carbide (4H-SiC) epitaxy on trenches with different geometric profiles. Sloped mesa sidewalls (8°) show improved filling behavior compared with vertical sidewalls (2°) and lower the optimum chlorine/silicon ratio (Si:Cl) required to complete filling. Both the optimum Cl:Si ratio (10) and sidewall angle are lower for wider trench openings, allowing complete fill of 3 µm wide trenches (8 µm pitch, 5 µm depth) at a filling rate of 19 µm h−1. Excessive hydrogen chloride (HCl) diminishes filling by reducing sidewall growth and can also produce an end surface with very rough topography. This work demonstrates the importance of trench geometry on both the filling behavior and process optimization in chlorinated trench filling epitaxy for the manufacture of 4H-SiC superjunction power electronics.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.