在基于 LLZTO 的高介电聚合物电解质中离解高浓度锂盐,用于低温锂金属电池

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiajun Gong, Zhicheng Yao, Qimin Peng, Huizi Tang, Wenhao Han and Shimou Chen
{"title":"在基于 LLZTO 的高介电聚合物电解质中离解高浓度锂盐,用于低温锂金属电池","authors":"Jiajun Gong, Zhicheng Yao, Qimin Peng, Huizi Tang, Wenhao Han and Shimou Chen","doi":"10.1039/D4QM00625A","DOIUrl":null,"url":null,"abstract":"<p >Incorporating high concentrations of lithium salts into solid polymer electrolytes can enhance the electrochemical performance of Li metal batteries. However, this approach is often obstructed by the reduced mechanical properties and limited lithium salt dissociation capacity. To address these challenges, we coupled a rigid inorganic solid electrolyte, Li<small><sub>6.4</sub></small>La<small><sub>3</sub></small>Zr<small><sub>1.4</sub></small>Ta<small><sub>0.6</sub></small>O<small><sub>12</sub></small> (LLZTO), with a high-dielectric-constant polymer, polyvinylidene-trifluoroethylene-trifluoroethylene chloride. The resulting composite solid electrolyte (named PTCL-1.5) significantly improves Li<small><sup>+</sup></small> transport at low temperatures. The assembled Li|PTCL-1.5|Li cell demonstrates remarkable cycling stability, operating for over 4350 hours at −20 °C and 0.1 mA cm<small><sup>−2</sup></small>. The PTCL-1.5 electrolyte exhibits excellent compatibility with various cathodes. Specifically, the Li|PTCL-1.5|LiNi<small><sub>0.8</sub></small>Co<small><sub>0.1</sub></small>Mn<small><sub>0.1</sub></small>O<small><sub>2</sub></small> cell achieves a capacity of 127.69 mA h g<small><sup>−1</sup></small> at −20 °C, while the Li|PTCL-1.5|LiFePO<small><sub>4</sub></small> cell shows exceptional cycle stability, exceeding 750 cycles. Our work offers a promising approach for developing solid-state electrolytes with high electrochemical stability at low temperatures.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 21","pages":" 3569-3576"},"PeriodicalIF":6.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dissociating high concentration lithium salts in LLZTO-based high dielectric polymer electrolytes for low temperature Li metal batteries†\",\"authors\":\"Jiajun Gong, Zhicheng Yao, Qimin Peng, Huizi Tang, Wenhao Han and Shimou Chen\",\"doi\":\"10.1039/D4QM00625A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Incorporating high concentrations of lithium salts into solid polymer electrolytes can enhance the electrochemical performance of Li metal batteries. However, this approach is often obstructed by the reduced mechanical properties and limited lithium salt dissociation capacity. To address these challenges, we coupled a rigid inorganic solid electrolyte, Li<small><sub>6.4</sub></small>La<small><sub>3</sub></small>Zr<small><sub>1.4</sub></small>Ta<small><sub>0.6</sub></small>O<small><sub>12</sub></small> (LLZTO), with a high-dielectric-constant polymer, polyvinylidene-trifluoroethylene-trifluoroethylene chloride. The resulting composite solid electrolyte (named PTCL-1.5) significantly improves Li<small><sup>+</sup></small> transport at low temperatures. The assembled Li|PTCL-1.5|Li cell demonstrates remarkable cycling stability, operating for over 4350 hours at −20 °C and 0.1 mA cm<small><sup>−2</sup></small>. The PTCL-1.5 electrolyte exhibits excellent compatibility with various cathodes. Specifically, the Li|PTCL-1.5|LiNi<small><sub>0.8</sub></small>Co<small><sub>0.1</sub></small>Mn<small><sub>0.1</sub></small>O<small><sub>2</sub></small> cell achieves a capacity of 127.69 mA h g<small><sup>−1</sup></small> at −20 °C, while the Li|PTCL-1.5|LiFePO<small><sub>4</sub></small> cell shows exceptional cycle stability, exceeding 750 cycles. Our work offers a promising approach for developing solid-state electrolytes with high electrochemical stability at low temperatures.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 21\",\"pages\":\" 3569-3576\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d4qm00625a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d4qm00625a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在固体聚合物电解质中加入高浓度的锂盐可以提高锂金属电池的电化学性能。然而,这种方法往往受到机械性能降低和锂盐解离能力有限的阻碍。为了应对这些挑战,我们将刚性无机固体电解质 Li6.4La3Zr1.4Ta0.6O12 (LLZTO) 与高介电常数聚合物聚偏二氟乙烯-三氟乙烯-三氟氯乙烯(polyvinylidene-trifluoroethylene-trifluoroethylene chloride)结合起来。由此产生的复合固体电解质(命名为 PTCL-1.5)可显著改善 Li+ 在低温下的传输。组装好的 Li|PTCL-1.5|Li 电池显示出卓越的循环稳定性,在 -20 °C 和 0.1 mA cm-2 条件下工作超过 4350 小时。PTCL-1.5 电解液与各种阴极具有良好的兼容性。具体来说,Li|PTCL-1.5|LiNi0.8Co0.1Mn0.1O2电池在-20 °C时的容量达到了127.69 mA h g-1,而Li|PTCL-1.5|LiFePO4电池则显示出卓越的循环稳定性,循环次数超过了750次。我们的工作为开发在低温条件下具有高电化学稳定性的固态电解质提供了一种前景广阔的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dissociating high concentration lithium salts in LLZTO-based high dielectric polymer electrolytes for low temperature Li metal batteries†

Dissociating high concentration lithium salts in LLZTO-based high dielectric polymer electrolytes for low temperature Li metal batteries†

Dissociating high concentration lithium salts in LLZTO-based high dielectric polymer electrolytes for low temperature Li metal batteries†

Incorporating high concentrations of lithium salts into solid polymer electrolytes can enhance the electrochemical performance of Li metal batteries. However, this approach is often obstructed by the reduced mechanical properties and limited lithium salt dissociation capacity. To address these challenges, we coupled a rigid inorganic solid electrolyte, Li6.4La3Zr1.4Ta0.6O12 (LLZTO), with a high-dielectric-constant polymer, polyvinylidene-trifluoroethylene-trifluoroethylene chloride. The resulting composite solid electrolyte (named PTCL-1.5) significantly improves Li+ transport at low temperatures. The assembled Li|PTCL-1.5|Li cell demonstrates remarkable cycling stability, operating for over 4350 hours at −20 °C and 0.1 mA cm−2. The PTCL-1.5 electrolyte exhibits excellent compatibility with various cathodes. Specifically, the Li|PTCL-1.5|LiNi0.8Co0.1Mn0.1O2 cell achieves a capacity of 127.69 mA h g−1 at −20 °C, while the Li|PTCL-1.5|LiFePO4 cell shows exceptional cycle stability, exceeding 750 cycles. Our work offers a promising approach for developing solid-state electrolytes with high electrochemical stability at low temperatures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信