{"title":"掺杂镍对氧空位引起的 CeO2 纳米棒结构和化学性质变化的影响","authors":"Yuanzheng Zhu, Weixia Wang, Gejunxiang Chen, Huyi Li, Yuedie Zhang, Chang Liu, Hao Wang, Ping Cheng, Chunguang Chen, Gimyeong Seong","doi":"10.3390/cryst14080746","DOIUrl":null,"url":null,"abstract":"In recent years, cerium dioxide (CeO2) has attracted considerable attention owing to its remarkable performance in various applications, including photocatalysis, fuel cells, and catalysis. This study explores the effect of nickel (Ni) doping on the structural, thermal, and chemical properties of CeO2 nanorods, particularly focusing on oxygen vacancy-related phenomena. Utilizing X-ray powder diffraction (XRD), alterations in crystal structure and peak shifts were observed, indicating successful Ni doping and the formation of Ni2O3 at higher doping levels, likely due to non-equilibrium reactions. Thermal gravimetric analysis (TGA) revealed changes in oxygen release mechanisms, with increasing Ni doping resulting in the release of lattice oxygen at lower temperatures. Raman spectroscopy corroborated these findings by identifying characteristic peaks associated with oxygen vacancies, facilitating the assessment of Ni doping levels. Ni-doped CeO2 can catalyze the ultrasonic degradation of methylene blue, which has good application prospects for catalytic ultrasonic degradation of organic pollutants. Overall, this study underscores the substantial impact of Ni doping on CeO2 nanorods, shedding light on tailored catalytic applications through the modulation of oxygen vacancies while preserving the nanorod morphology.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"4 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Ni Doping on Oxygen Vacancy-Induced Changes in Structural and Chemical Properties of CeO2 Nanorods\",\"authors\":\"Yuanzheng Zhu, Weixia Wang, Gejunxiang Chen, Huyi Li, Yuedie Zhang, Chang Liu, Hao Wang, Ping Cheng, Chunguang Chen, Gimyeong Seong\",\"doi\":\"10.3390/cryst14080746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, cerium dioxide (CeO2) has attracted considerable attention owing to its remarkable performance in various applications, including photocatalysis, fuel cells, and catalysis. This study explores the effect of nickel (Ni) doping on the structural, thermal, and chemical properties of CeO2 nanorods, particularly focusing on oxygen vacancy-related phenomena. Utilizing X-ray powder diffraction (XRD), alterations in crystal structure and peak shifts were observed, indicating successful Ni doping and the formation of Ni2O3 at higher doping levels, likely due to non-equilibrium reactions. Thermal gravimetric analysis (TGA) revealed changes in oxygen release mechanisms, with increasing Ni doping resulting in the release of lattice oxygen at lower temperatures. Raman spectroscopy corroborated these findings by identifying characteristic peaks associated with oxygen vacancies, facilitating the assessment of Ni doping levels. Ni-doped CeO2 can catalyze the ultrasonic degradation of methylene blue, which has good application prospects for catalytic ultrasonic degradation of organic pollutants. Overall, this study underscores the substantial impact of Ni doping on CeO2 nanorods, shedding light on tailored catalytic applications through the modulation of oxygen vacancies while preserving the nanorod morphology.\",\"PeriodicalId\":10855,\"journal\":{\"name\":\"Crystals\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/cryst14080746\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cryst14080746","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
摘要
近年来,二氧化铈(CeO2)因其在光催化、燃料电池和催化等各种应用中的卓越性能而备受关注。本研究探讨了掺杂镍(Ni)对二氧化铈纳米棒的结构、热和化学特性的影响,尤其关注与氧空位相关的现象。利用 X 射线粉末衍射 (XRD),观察到晶体结构的改变和峰值移动,表明掺杂镍成功,并且在掺杂水平较高时形成了 Ni2O3,这可能是由于非平衡反应造成的。热重分析(TGA)显示了氧释放机制的变化,掺杂镍量的增加导致晶格氧在较低温度下释放。拉曼光谱通过识别与氧空位相关的特征峰证实了这些发现,从而有助于评估掺镍水平。掺杂镍的 CeO2 可以催化亚甲基蓝的超声降解,在催化超声降解有机污染物方面具有良好的应用前景。总之,本研究强调了掺杂镍对 CeO2 纳米棒的重大影响,通过在保持纳米棒形态的同时调节氧空位,为定制催化应用提供了启示。
Influence of Ni Doping on Oxygen Vacancy-Induced Changes in Structural and Chemical Properties of CeO2 Nanorods
In recent years, cerium dioxide (CeO2) has attracted considerable attention owing to its remarkable performance in various applications, including photocatalysis, fuel cells, and catalysis. This study explores the effect of nickel (Ni) doping on the structural, thermal, and chemical properties of CeO2 nanorods, particularly focusing on oxygen vacancy-related phenomena. Utilizing X-ray powder diffraction (XRD), alterations in crystal structure and peak shifts were observed, indicating successful Ni doping and the formation of Ni2O3 at higher doping levels, likely due to non-equilibrium reactions. Thermal gravimetric analysis (TGA) revealed changes in oxygen release mechanisms, with increasing Ni doping resulting in the release of lattice oxygen at lower temperatures. Raman spectroscopy corroborated these findings by identifying characteristic peaks associated with oxygen vacancies, facilitating the assessment of Ni doping levels. Ni-doped CeO2 can catalyze the ultrasonic degradation of methylene blue, which has good application prospects for catalytic ultrasonic degradation of organic pollutants. Overall, this study underscores the substantial impact of Ni doping on CeO2 nanorods, shedding light on tailored catalytic applications through the modulation of oxygen vacancies while preserving the nanorod morphology.
期刊介绍:
Crystals (ISSN 2073-4352) is an open access journal that covers all aspects of crystalline material research. Crystals can act as a reference, and as a publication resource, to the community. It publishes reviews, regular research articles, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Full experimental details must be provided to enable the results to be reproduced. Crystals provides a forum for the advancement of our understanding of the nucleation, growth, processing, and characterization of crystalline materials. Their mechanical, chemical, electronic, magnetic, and optical properties, and their diverse applications, are all considered to be of importance.