Lei Huang, Ke Wang, Wenjun Meng, Zhixia Wang, Pengtao Liu
{"title":"不同退火温度下热轧 BTW1/Q345 复合板材的耐磨性能研究","authors":"Lei Huang, Ke Wang, Wenjun Meng, Zhixia Wang, Pengtao Liu","doi":"10.3390/cryst14090772","DOIUrl":null,"url":null,"abstract":"Wear-resistant steel/carbon steel composite plates not only have the double performance advantages of high strength and wear resistance but can also reduce energy consumption and production costs. Based on a 50% reduction rate, the wear resistance of the BTW1/Q345 composite was studied at different annealing temperatures, and the dry friction and wear tests of the BTW1/Q345 composite at different annealing temperatures were carried out using RETC MFT-5000. By using the white-light interference three-dimensional surface profiler, scanning electron microscope (SEM), and backscattered electron diffraction (EBSD) technology, we carried out a detailed analysis of the macroscopic and microscopic morphology and wear mechanism of wear traces at different annealing temperatures. The effects of the annealing process on the thickness and composition of the wear layer were studied, and the causes of wear failure were analyzed based on the results of scanning electron microscopy. It was found that as the annealing temperature gradually increased, the particle size near the scratch of BTW1 in the wear-resistant layer of the composite plate became smaller. On this basis, the effects of different annealing temperatures on the friction and wear characteristics of the composite plate were further studied. At the annealing temperature of 860 ° C, the wear resistance of the material was the best.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"47 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Wear Resistance Performance of the Hot-Rolled BTW1/Q345 Composite Plate under Different Annealing Temperatures\",\"authors\":\"Lei Huang, Ke Wang, Wenjun Meng, Zhixia Wang, Pengtao Liu\",\"doi\":\"10.3390/cryst14090772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wear-resistant steel/carbon steel composite plates not only have the double performance advantages of high strength and wear resistance but can also reduce energy consumption and production costs. Based on a 50% reduction rate, the wear resistance of the BTW1/Q345 composite was studied at different annealing temperatures, and the dry friction and wear tests of the BTW1/Q345 composite at different annealing temperatures were carried out using RETC MFT-5000. By using the white-light interference three-dimensional surface profiler, scanning electron microscope (SEM), and backscattered electron diffraction (EBSD) technology, we carried out a detailed analysis of the macroscopic and microscopic morphology and wear mechanism of wear traces at different annealing temperatures. The effects of the annealing process on the thickness and composition of the wear layer were studied, and the causes of wear failure were analyzed based on the results of scanning electron microscopy. It was found that as the annealing temperature gradually increased, the particle size near the scratch of BTW1 in the wear-resistant layer of the composite plate became smaller. On this basis, the effects of different annealing temperatures on the friction and wear characteristics of the composite plate were further studied. At the annealing temperature of 860 ° C, the wear resistance of the material was the best.\",\"PeriodicalId\":10855,\"journal\":{\"name\":\"Crystals\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/cryst14090772\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cryst14090772","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Study on the Wear Resistance Performance of the Hot-Rolled BTW1/Q345 Composite Plate under Different Annealing Temperatures
Wear-resistant steel/carbon steel composite plates not only have the double performance advantages of high strength and wear resistance but can also reduce energy consumption and production costs. Based on a 50% reduction rate, the wear resistance of the BTW1/Q345 composite was studied at different annealing temperatures, and the dry friction and wear tests of the BTW1/Q345 composite at different annealing temperatures were carried out using RETC MFT-5000. By using the white-light interference three-dimensional surface profiler, scanning electron microscope (SEM), and backscattered electron diffraction (EBSD) technology, we carried out a detailed analysis of the macroscopic and microscopic morphology and wear mechanism of wear traces at different annealing temperatures. The effects of the annealing process on the thickness and composition of the wear layer were studied, and the causes of wear failure were analyzed based on the results of scanning electron microscopy. It was found that as the annealing temperature gradually increased, the particle size near the scratch of BTW1 in the wear-resistant layer of the composite plate became smaller. On this basis, the effects of different annealing temperatures on the friction and wear characteristics of the composite plate were further studied. At the annealing temperature of 860 ° C, the wear resistance of the material was the best.
期刊介绍:
Crystals (ISSN 2073-4352) is an open access journal that covers all aspects of crystalline material research. Crystals can act as a reference, and as a publication resource, to the community. It publishes reviews, regular research articles, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Full experimental details must be provided to enable the results to be reproduced. Crystals provides a forum for the advancement of our understanding of the nucleation, growth, processing, and characterization of crystalline materials. Their mechanical, chemical, electronic, magnetic, and optical properties, and their diverse applications, are all considered to be of importance.