含铜矿床氧化带次生矿物的近红外光谱研究

IF 2.4 4区 材料科学 Q2 CRYSTALLOGRAPHY
Crystals Pub Date : 2024-09-07 DOI:10.3390/cryst14090791
Shaokun Wu, Mingyue He, Mei Yang, Bijie Peng, Yujia Shi, Kaiyue Sun
{"title":"含铜矿床氧化带次生矿物的近红外光谱研究","authors":"Shaokun Wu, Mingyue He, Mei Yang, Bijie Peng, Yujia Shi, Kaiyue Sun","doi":"10.3390/cryst14090791","DOIUrl":null,"url":null,"abstract":"This study measured the infrared spectra of secondary minerals in the oxidation zones of three types of copper ores: dioptase, malachite, and azurite, and assigned the peak positions of OH stretching vibrations and the origins of OH combination vibrations. Dioptase contains three types of water molecules with different orientations within its ring channels, which exhibit six kinds of OH stretching vibrations in the 3000–3600 cm−1 range; the bond length range is 2.652 to 2.887 Å. Among them, the 3443 cm−1 band shows strong near-infrared activity and combines with Si–O vibrations or OH bending vibrations in the structure, resulting in five combination vibration peaks in the 4000–5000 cm−1 range. Malachite contains two inequivalent hydroxyls in its structure, leading to two OH stretching vibrations in the high-frequency region located at 3314 and 3402 cm−1, respectively. Azurite contains only one type of hydroxyl, and thus only one characteristic OH stretching vibration is present at 3424 cm−1. The OH stretching vibrations of malachite and azurite mainly combine with [CO3]2− vibrations or OH bending vibrations, leading to six and five combination peaks in the OH combination vibration region, respectively. By analyzing the combination of peak positions at 4341 cm−1 in the near-infrared spectrum, the merged OH bending vibration at 921 cm−1 in azurite was discovered. Spectroscopic research on secondary minerals can better provide a basis for ore exploration and geological remote sensing.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-Infrared Spectroscopic Study of Secondary Minerals in the Oxidation Zones of Copper-Bearing Deposits\",\"authors\":\"Shaokun Wu, Mingyue He, Mei Yang, Bijie Peng, Yujia Shi, Kaiyue Sun\",\"doi\":\"10.3390/cryst14090791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study measured the infrared spectra of secondary minerals in the oxidation zones of three types of copper ores: dioptase, malachite, and azurite, and assigned the peak positions of OH stretching vibrations and the origins of OH combination vibrations. Dioptase contains three types of water molecules with different orientations within its ring channels, which exhibit six kinds of OH stretching vibrations in the 3000–3600 cm−1 range; the bond length range is 2.652 to 2.887 Å. Among them, the 3443 cm−1 band shows strong near-infrared activity and combines with Si–O vibrations or OH bending vibrations in the structure, resulting in five combination vibration peaks in the 4000–5000 cm−1 range. Malachite contains two inequivalent hydroxyls in its structure, leading to two OH stretching vibrations in the high-frequency region located at 3314 and 3402 cm−1, respectively. Azurite contains only one type of hydroxyl, and thus only one characteristic OH stretching vibration is present at 3424 cm−1. The OH stretching vibrations of malachite and azurite mainly combine with [CO3]2− vibrations or OH bending vibrations, leading to six and five combination peaks in the OH combination vibration region, respectively. By analyzing the combination of peak positions at 4341 cm−1 in the near-infrared spectrum, the merged OH bending vibration at 921 cm−1 in azurite was discovered. Spectroscopic research on secondary minerals can better provide a basis for ore exploration and geological remote sensing.\",\"PeriodicalId\":10855,\"journal\":{\"name\":\"Crystals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/cryst14090791\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cryst14090791","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

本研究测量了光卤石、孔雀石和天青石三种铜矿氧化带次生矿物的红外光谱,并确定了OH伸缩振动的峰位和OH组合振动的起源。其中,3443 cm-1 波段表现出较强的近红外活性,并与结构中的 Si-O 振荡或 OH 弯曲振动相结合,产生了 5 个 4000-5000 cm-1 范围内的组合振动峰。孔雀石的结构中含有两个不等价的羟基,导致在高频区出现两个羟基伸缩振动,分别位于 3314 和 3402 cm-1。天青石只含有一种羟基,因此在 3424 cm-1 处只有一种特征 OH 伸缩振动。孔雀石和天青石的 OH 伸缩振动主要与 [CO3]2- 振动或 OH 弯曲振动相结合,导致 OH 组合振动区域分别出现六个和五个组合峰。通过分析近红外光谱中 4341 cm-1 处的组合峰位置,发现了天青石中 921 cm-1 处的合并 OH 弯曲振动。对次生矿物的光谱研究能更好地为矿石勘探和地质遥感提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near-Infrared Spectroscopic Study of Secondary Minerals in the Oxidation Zones of Copper-Bearing Deposits
This study measured the infrared spectra of secondary minerals in the oxidation zones of three types of copper ores: dioptase, malachite, and azurite, and assigned the peak positions of OH stretching vibrations and the origins of OH combination vibrations. Dioptase contains three types of water molecules with different orientations within its ring channels, which exhibit six kinds of OH stretching vibrations in the 3000–3600 cm−1 range; the bond length range is 2.652 to 2.887 Å. Among them, the 3443 cm−1 band shows strong near-infrared activity and combines with Si–O vibrations or OH bending vibrations in the structure, resulting in five combination vibration peaks in the 4000–5000 cm−1 range. Malachite contains two inequivalent hydroxyls in its structure, leading to two OH stretching vibrations in the high-frequency region located at 3314 and 3402 cm−1, respectively. Azurite contains only one type of hydroxyl, and thus only one characteristic OH stretching vibration is present at 3424 cm−1. The OH stretching vibrations of malachite and azurite mainly combine with [CO3]2− vibrations or OH bending vibrations, leading to six and five combination peaks in the OH combination vibration region, respectively. By analyzing the combination of peak positions at 4341 cm−1 in the near-infrared spectrum, the merged OH bending vibration at 921 cm−1 in azurite was discovered. Spectroscopic research on secondary minerals can better provide a basis for ore exploration and geological remote sensing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Crystals
Crystals CRYSTALLOGRAPHYMATERIALS SCIENCE, MULTIDIS-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
4.20
自引率
11.10%
发文量
1527
审稿时长
16.12 days
期刊介绍: Crystals (ISSN 2073-4352) is an open access journal that covers all aspects of crystalline material research. Crystals can act as a reference, and as a publication resource, to the community. It publishes reviews, regular research articles, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Full experimental details must be provided to enable the results to be reproduced. Crystals provides a  forum for the advancement of our understanding of the nucleation, growth, processing, and characterization of crystalline materials. Their mechanical, chemical, electronic, magnetic, and optical properties, and their diverse applications, are all considered to be of importance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信