{"title":"舱口间距对通过选择性激光熔化实现的铝-空气电池 CeO2/Al6061 阳极的电化学和放电性能的影响","authors":"Yinbiao Li, Weipeng Duan","doi":"10.3390/cryst14090797","DOIUrl":null,"url":null,"abstract":"To improve the electrochemical activity and discharge performance of an aluminum-air (Al-air) battery, a commercial 6061 alloy (Al6061) was selected as the anode, and CeO2 was also added inside the anode to enhance its performance. The CeO2/Al6061 composite was prepared using selective laser melting (SLM) technology. The influence of hatch spacing on the forming quality, corrosion resistance, and discharge performance of the anode was studied in detail. The results showed that with an increase in hatch spacing, the density, corrosion resistance, and discharge performance of the anode first increased and then decreased. When the hatch spacing is 0.13 mm, the anode has the best forming quality. At this point, the density reaches 98.39%, and the self-corrosion rate (SCR) decreases to 2.596 × 10−4 g·cm−2·min−1. Meanwhile, the anode exhibits its highest electrochemical activity and discharge voltage, which is up to −1.570 V. The change in anode performance is related to the defects generated during the SLM forming process. For samples with fewer defects, the anode can dissolve uniformly, while for samples with more defects, the electrode solution is prone to penetrate the defects, causing uneven corrosion and reducing electrochemical and discharge activity.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"186 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Hatch Spacing on the Electrochemistry and Discharge Performance of a CeO2/Al6061 Anode for an Al-Air Battery via Selective Laser Melting\",\"authors\":\"Yinbiao Li, Weipeng Duan\",\"doi\":\"10.3390/cryst14090797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the electrochemical activity and discharge performance of an aluminum-air (Al-air) battery, a commercial 6061 alloy (Al6061) was selected as the anode, and CeO2 was also added inside the anode to enhance its performance. The CeO2/Al6061 composite was prepared using selective laser melting (SLM) technology. The influence of hatch spacing on the forming quality, corrosion resistance, and discharge performance of the anode was studied in detail. The results showed that with an increase in hatch spacing, the density, corrosion resistance, and discharge performance of the anode first increased and then decreased. When the hatch spacing is 0.13 mm, the anode has the best forming quality. At this point, the density reaches 98.39%, and the self-corrosion rate (SCR) decreases to 2.596 × 10−4 g·cm−2·min−1. Meanwhile, the anode exhibits its highest electrochemical activity and discharge voltage, which is up to −1.570 V. The change in anode performance is related to the defects generated during the SLM forming process. For samples with fewer defects, the anode can dissolve uniformly, while for samples with more defects, the electrode solution is prone to penetrate the defects, causing uneven corrosion and reducing electrochemical and discharge activity.\",\"PeriodicalId\":10855,\"journal\":{\"name\":\"Crystals\",\"volume\":\"186 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/cryst14090797\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cryst14090797","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
The Effect of Hatch Spacing on the Electrochemistry and Discharge Performance of a CeO2/Al6061 Anode for an Al-Air Battery via Selective Laser Melting
To improve the electrochemical activity and discharge performance of an aluminum-air (Al-air) battery, a commercial 6061 alloy (Al6061) was selected as the anode, and CeO2 was also added inside the anode to enhance its performance. The CeO2/Al6061 composite was prepared using selective laser melting (SLM) technology. The influence of hatch spacing on the forming quality, corrosion resistance, and discharge performance of the anode was studied in detail. The results showed that with an increase in hatch spacing, the density, corrosion resistance, and discharge performance of the anode first increased and then decreased. When the hatch spacing is 0.13 mm, the anode has the best forming quality. At this point, the density reaches 98.39%, and the self-corrosion rate (SCR) decreases to 2.596 × 10−4 g·cm−2·min−1. Meanwhile, the anode exhibits its highest electrochemical activity and discharge voltage, which is up to −1.570 V. The change in anode performance is related to the defects generated during the SLM forming process. For samples with fewer defects, the anode can dissolve uniformly, while for samples with more defects, the electrode solution is prone to penetrate the defects, causing uneven corrosion and reducing electrochemical and discharge activity.
期刊介绍:
Crystals (ISSN 2073-4352) is an open access journal that covers all aspects of crystalline material research. Crystals can act as a reference, and as a publication resource, to the community. It publishes reviews, regular research articles, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Full experimental details must be provided to enable the results to be reproduced. Crystals provides a forum for the advancement of our understanding of the nucleation, growth, processing, and characterization of crystalline materials. Their mechanical, chemical, electronic, magnetic, and optical properties, and their diverse applications, are all considered to be of importance.