舱口间距对通过选择性激光熔化实现的铝-空气电池 CeO2/Al6061 阳极的电化学和放电性能的影响

IF 2.4 4区 材料科学 Q2 CRYSTALLOGRAPHY
Crystals Pub Date : 2024-09-09 DOI:10.3390/cryst14090797
Yinbiao Li, Weipeng Duan
{"title":"舱口间距对通过选择性激光熔化实现的铝-空气电池 CeO2/Al6061 阳极的电化学和放电性能的影响","authors":"Yinbiao Li, Weipeng Duan","doi":"10.3390/cryst14090797","DOIUrl":null,"url":null,"abstract":"To improve the electrochemical activity and discharge performance of an aluminum-air (Al-air) battery, a commercial 6061 alloy (Al6061) was selected as the anode, and CeO2 was also added inside the anode to enhance its performance. The CeO2/Al6061 composite was prepared using selective laser melting (SLM) technology. The influence of hatch spacing on the forming quality, corrosion resistance, and discharge performance of the anode was studied in detail. The results showed that with an increase in hatch spacing, the density, corrosion resistance, and discharge performance of the anode first increased and then decreased. When the hatch spacing is 0.13 mm, the anode has the best forming quality. At this point, the density reaches 98.39%, and the self-corrosion rate (SCR) decreases to 2.596 × 10−4 g·cm−2·min−1. Meanwhile, the anode exhibits its highest electrochemical activity and discharge voltage, which is up to −1.570 V. The change in anode performance is related to the defects generated during the SLM forming process. For samples with fewer defects, the anode can dissolve uniformly, while for samples with more defects, the electrode solution is prone to penetrate the defects, causing uneven corrosion and reducing electrochemical and discharge activity.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Hatch Spacing on the Electrochemistry and Discharge Performance of a CeO2/Al6061 Anode for an Al-Air Battery via Selective Laser Melting\",\"authors\":\"Yinbiao Li, Weipeng Duan\",\"doi\":\"10.3390/cryst14090797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the electrochemical activity and discharge performance of an aluminum-air (Al-air) battery, a commercial 6061 alloy (Al6061) was selected as the anode, and CeO2 was also added inside the anode to enhance its performance. The CeO2/Al6061 composite was prepared using selective laser melting (SLM) technology. The influence of hatch spacing on the forming quality, corrosion resistance, and discharge performance of the anode was studied in detail. The results showed that with an increase in hatch spacing, the density, corrosion resistance, and discharge performance of the anode first increased and then decreased. When the hatch spacing is 0.13 mm, the anode has the best forming quality. At this point, the density reaches 98.39%, and the self-corrosion rate (SCR) decreases to 2.596 × 10−4 g·cm−2·min−1. Meanwhile, the anode exhibits its highest electrochemical activity and discharge voltage, which is up to −1.570 V. The change in anode performance is related to the defects generated during the SLM forming process. For samples with fewer defects, the anode can dissolve uniformly, while for samples with more defects, the electrode solution is prone to penetrate the defects, causing uneven corrosion and reducing electrochemical and discharge activity.\",\"PeriodicalId\":10855,\"journal\":{\"name\":\"Crystals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/cryst14090797\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cryst14090797","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

为了提高铝-空气(Al-air)电池的电化学活性和放电性能,我们选择了商用 6061 合金(Al6061)作为阳极,并在阳极内添加 CeO2 以提高其性能。CeO2/Al6061 复合材料是采用选择性激光熔融(SLM)技术制备的。详细研究了舱口间距对阳极的成型质量、耐腐蚀性和放电性能的影响。结果表明,随着间距的增大,阳极的密度、耐腐蚀性和放电性能先增大后减小。当舱口间距为 0.13 毫米时,阳极的成型质量最好。此时,密度达到 98.39%,自腐蚀速率(SCR)降至 2.596 × 10-4 g-cm-2-min-1。同时,阳极显示出最高的电化学活性和放电电压,最高达 -1.570 V。阳极性能的变化与 SLM 成型过程中产生的缺陷有关。对于缺陷较少的样品,阳极可以均匀溶解,而对于缺陷较多的样品,电极溶液容易渗透到缺陷中,导致腐蚀不均匀,降低电化学活性和放电活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Effect of Hatch Spacing on the Electrochemistry and Discharge Performance of a CeO2/Al6061 Anode for an Al-Air Battery via Selective Laser Melting
To improve the electrochemical activity and discharge performance of an aluminum-air (Al-air) battery, a commercial 6061 alloy (Al6061) was selected as the anode, and CeO2 was also added inside the anode to enhance its performance. The CeO2/Al6061 composite was prepared using selective laser melting (SLM) technology. The influence of hatch spacing on the forming quality, corrosion resistance, and discharge performance of the anode was studied in detail. The results showed that with an increase in hatch spacing, the density, corrosion resistance, and discharge performance of the anode first increased and then decreased. When the hatch spacing is 0.13 mm, the anode has the best forming quality. At this point, the density reaches 98.39%, and the self-corrosion rate (SCR) decreases to 2.596 × 10−4 g·cm−2·min−1. Meanwhile, the anode exhibits its highest electrochemical activity and discharge voltage, which is up to −1.570 V. The change in anode performance is related to the defects generated during the SLM forming process. For samples with fewer defects, the anode can dissolve uniformly, while for samples with more defects, the electrode solution is prone to penetrate the defects, causing uneven corrosion and reducing electrochemical and discharge activity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Crystals
Crystals CRYSTALLOGRAPHYMATERIALS SCIENCE, MULTIDIS-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
4.20
自引率
11.10%
发文量
1527
审稿时长
16.12 days
期刊介绍: Crystals (ISSN 2073-4352) is an open access journal that covers all aspects of crystalline material research. Crystals can act as a reference, and as a publication resource, to the community. It publishes reviews, regular research articles, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Full experimental details must be provided to enable the results to be reproduced. Crystals provides a  forum for the advancement of our understanding of the nucleation, growth, processing, and characterization of crystalline materials. Their mechanical, chemical, electronic, magnetic, and optical properties, and their diverse applications, are all considered to be of importance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信