部分函数的覆盖和受限联合

IF 0.6 4区 数学 Q3 MATHEMATICS
Tim Stokes
{"title":"部分函数的覆盖和受限联合","authors":"Tim Stokes","doi":"10.1007/s00012-024-00864-6","DOIUrl":null,"url":null,"abstract":"<div><p>The <i>override</i> operation <span>\\(\\sqcup \\)</span> is a natural one in computer science, and has connections with other areas of mathematics such as hyperplane arrangements. For arbitrary functions <i>f</i> and <i>g</i>, <span>\\(f\\sqcup g\\)</span> is the function with domain <span>\\({{\\,\\textrm{dom}\\,}}(f)\\cup {{\\,\\textrm{dom}\\,}}(g)\\)</span> that agrees with <i>f</i> on <span>\\({{\\,\\textrm{dom}\\,}}(f)\\)</span> and with <i>g</i> on <span>\\({{\\,\\textrm{dom}\\,}}(g) \\backslash {{\\,\\textrm{dom}\\,}}(f)\\)</span>. Jackson and the author have shown that there is no finite axiomatisation of algebras of functions of signature <span>\\((\\sqcup )\\)</span>. But adding operations (such as <i>update</i>) to this minimal signature can lead to finite axiomatisations. For the functional signature <span>\\((\\sqcup ,\\backslash )\\)</span> where <span>\\(\\backslash \\)</span> is set-theoretic difference, Cirulis has given a finite equational axiomatisation as subtraction o-semilattices. Define <span>\\(f\\curlyvee g=(f\\sqcup g)\\cap (g\\sqcup f)\\)</span> for all functions <i>f</i> and <i>g</i>; this is the largest domain restriction of the binary relation <span>\\(f\\cup g\\)</span> that gives a partial function. Now <span>\\(f\\cap g=f\\backslash (f\\backslash g)\\)</span> and <span>\\(f\\sqcup g=f\\curlyvee (f\\curlyvee g)\\)</span> for all functions <i>f</i>, <i>g</i>, so the signatures <span>\\((\\curlyvee )\\)</span> and <span>\\((\\sqcup ,\\cap )\\)</span> are both intermediate between <span>\\((\\sqcup )\\)</span> and <span>\\((\\sqcup ,\\backslash )\\)</span> in expressive power. We show that each is finitely axiomatised, with the former giving a proper quasivariety and the latter the variety of associative distributive o-semilattices in the sense of Cirulis.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00012-024-00864-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Override and restricted union for partial functions\",\"authors\":\"Tim Stokes\",\"doi\":\"10.1007/s00012-024-00864-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The <i>override</i> operation <span>\\\\(\\\\sqcup \\\\)</span> is a natural one in computer science, and has connections with other areas of mathematics such as hyperplane arrangements. For arbitrary functions <i>f</i> and <i>g</i>, <span>\\\\(f\\\\sqcup g\\\\)</span> is the function with domain <span>\\\\({{\\\\,\\\\textrm{dom}\\\\,}}(f)\\\\cup {{\\\\,\\\\textrm{dom}\\\\,}}(g)\\\\)</span> that agrees with <i>f</i> on <span>\\\\({{\\\\,\\\\textrm{dom}\\\\,}}(f)\\\\)</span> and with <i>g</i> on <span>\\\\({{\\\\,\\\\textrm{dom}\\\\,}}(g) \\\\backslash {{\\\\,\\\\textrm{dom}\\\\,}}(f)\\\\)</span>. Jackson and the author have shown that there is no finite axiomatisation of algebras of functions of signature <span>\\\\((\\\\sqcup )\\\\)</span>. But adding operations (such as <i>update</i>) to this minimal signature can lead to finite axiomatisations. For the functional signature <span>\\\\((\\\\sqcup ,\\\\backslash )\\\\)</span> where <span>\\\\(\\\\backslash \\\\)</span> is set-theoretic difference, Cirulis has given a finite equational axiomatisation as subtraction o-semilattices. Define <span>\\\\(f\\\\curlyvee g=(f\\\\sqcup g)\\\\cap (g\\\\sqcup f)\\\\)</span> for all functions <i>f</i> and <i>g</i>; this is the largest domain restriction of the binary relation <span>\\\\(f\\\\cup g\\\\)</span> that gives a partial function. Now <span>\\\\(f\\\\cap g=f\\\\backslash (f\\\\backslash g)\\\\)</span> and <span>\\\\(f\\\\sqcup g=f\\\\curlyvee (f\\\\curlyvee g)\\\\)</span> for all functions <i>f</i>, <i>g</i>, so the signatures <span>\\\\((\\\\curlyvee )\\\\)</span> and <span>\\\\((\\\\sqcup ,\\\\cap )\\\\)</span> are both intermediate between <span>\\\\((\\\\sqcup )\\\\)</span> and <span>\\\\((\\\\sqcup ,\\\\backslash )\\\\)</span> in expressive power. We show that each is finitely axiomatised, with the former giving a proper quasivariety and the latter the variety of associative distributive o-semilattices in the sense of Cirulis.</p></div>\",\"PeriodicalId\":50827,\"journal\":{\"name\":\"Algebra Universalis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00012-024-00864-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Universalis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00012-024-00864-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-024-00864-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

覆盖运算(override operation)是计算机科学中的一种自然运算,与超平面排列等其他数学领域也有联系。对于任意函数 f 和 g,\(f\sqcup g\) 是域为\({{\textrm{ddom}\,}}(f)\cup {{\,\textrm{dom}\、(g))上与 f 一致,而在({{\textrm{dom}\,}}(g) \backslash {{\textrm{dom}\,}}(f))上与 g 一致。杰克逊和作者已经证明,不存在签名为\((\sqcup )\)的函数代数的有限公理化。但是在这个最小签名上添加操作(比如更新)可以导致有限公理化。对于函数签名\((\sqcup ,\backslash)\),其中\(\backslash\)是集合论差分,西鲁利斯给出了一个有限等式公理化,即减法o-semilattices。对于所有函数 f 和 g,定义 \(f\curlyvee g=(f\sqcup g)\cap (g\sqcup f)\);这是给出偏函数的二元关系 \(f\cup g\) 的最大域限制。现在 \(f\cap g=f\backslash (f\backslash g)\) 和 \(f\sqcup g=f\curlyvee (f\curlyvee g)\) 适用于所有函数 f、g、所以签名 \((\curlyvee )\) 和 \((\sqcup ,\cap )\) 在表达能力上都介于 \((\sqcup )\) 和 \((\sqcup ,\backslash )\) 之间。我们证明每一个都是有限公理化的,前者给出了一个适当的准变量,后者给出了 Cirulis 意义上的关联分布式 o-semilattices 的种类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Override and restricted union for partial functions

The override operation \(\sqcup \) is a natural one in computer science, and has connections with other areas of mathematics such as hyperplane arrangements. For arbitrary functions f and g, \(f\sqcup g\) is the function with domain \({{\,\textrm{dom}\,}}(f)\cup {{\,\textrm{dom}\,}}(g)\) that agrees with f on \({{\,\textrm{dom}\,}}(f)\) and with g on \({{\,\textrm{dom}\,}}(g) \backslash {{\,\textrm{dom}\,}}(f)\). Jackson and the author have shown that there is no finite axiomatisation of algebras of functions of signature \((\sqcup )\). But adding operations (such as update) to this minimal signature can lead to finite axiomatisations. For the functional signature \((\sqcup ,\backslash )\) where \(\backslash \) is set-theoretic difference, Cirulis has given a finite equational axiomatisation as subtraction o-semilattices. Define \(f\curlyvee g=(f\sqcup g)\cap (g\sqcup f)\) for all functions f and g; this is the largest domain restriction of the binary relation \(f\cup g\) that gives a partial function. Now \(f\cap g=f\backslash (f\backslash g)\) and \(f\sqcup g=f\curlyvee (f\curlyvee g)\) for all functions fg, so the signatures \((\curlyvee )\) and \((\sqcup ,\cap )\) are both intermediate between \((\sqcup )\) and \((\sqcup ,\backslash )\) in expressive power. We show that each is finitely axiomatised, with the former giving a proper quasivariety and the latter the variety of associative distributive o-semilattices in the sense of Cirulis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra Universalis
Algebra Universalis 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
34
审稿时长
3 months
期刊介绍: Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信