其紧凑相对全等为主项的代数准变量

IF 0.6 4区 数学 Q3 MATHEMATICS
Anvar M. Nurakunov
{"title":"其紧凑相对全等为主项的代数准变量","authors":"Anvar M. Nurakunov","doi":"10.1007/s00012-024-00866-4","DOIUrl":null,"url":null,"abstract":"<div><p>A quasivariety <span>\\(\\mathfrak N\\)</span> is called <i>relative congruence principal</i> if, for every algebra <span>\\(A\\in \\mathfrak N\\)</span>, every compact <span>\\(\\mathfrak N\\)</span>-congruence on <i>A</i> is a principal <span>\\(\\mathfrak N\\)</span>-congruence. We characterize relative congruence principal quasivarieties in terms of one identity and two quasi-identities. We will use the characterization to show that there exists a continuum of relative congruence principal quasivarieties of algebras of a signature <span>\\(\\sigma \\)</span>, provided <span>\\(\\sigma \\)</span> contains at least one operation of arity greater than 1. Several examples are provided.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasivarieties of algebras whose compact relative congruences are principal\",\"authors\":\"Anvar M. Nurakunov\",\"doi\":\"10.1007/s00012-024-00866-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A quasivariety <span>\\\\(\\\\mathfrak N\\\\)</span> is called <i>relative congruence principal</i> if, for every algebra <span>\\\\(A\\\\in \\\\mathfrak N\\\\)</span>, every compact <span>\\\\(\\\\mathfrak N\\\\)</span>-congruence on <i>A</i> is a principal <span>\\\\(\\\\mathfrak N\\\\)</span>-congruence. We characterize relative congruence principal quasivarieties in terms of one identity and two quasi-identities. We will use the characterization to show that there exists a continuum of relative congruence principal quasivarieties of algebras of a signature <span>\\\\(\\\\sigma \\\\)</span>, provided <span>\\\\(\\\\sigma \\\\)</span> contains at least one operation of arity greater than 1. Several examples are provided.</p></div>\",\"PeriodicalId\":50827,\"journal\":{\"name\":\"Algebra Universalis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Universalis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00012-024-00866-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-024-00866-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果对于每一个代数(A)来说,A上的每一个紧凑的同调都是一个主同调,那么这个准变量(\(\mathfrak N\) )就叫做相对同调主变量。我们用一个同一性和两个准同一性来描述相对全等主类群。我们将用这个特征来证明,只要 \(\sigma \)包含至少一个算术度大于 1 的运算,就存在一个连续的签名 \(\sigma \)的代数的相对全等主类群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasivarieties of algebras whose compact relative congruences are principal

A quasivariety \(\mathfrak N\) is called relative congruence principal if, for every algebra \(A\in \mathfrak N\), every compact \(\mathfrak N\)-congruence on A is a principal \(\mathfrak N\)-congruence. We characterize relative congruence principal quasivarieties in terms of one identity and two quasi-identities. We will use the characterization to show that there exists a continuum of relative congruence principal quasivarieties of algebras of a signature \(\sigma \), provided \(\sigma \) contains at least one operation of arity greater than 1. Several examples are provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra Universalis
Algebra Universalis 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
34
审稿时长
3 months
期刊介绍: Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信