{"title":"笛卡儿封闭变体 I:分类定理","authors":"Richard Garner","doi":"10.1007/s00012-024-00869-1","DOIUrl":null,"url":null,"abstract":"<div><p>In 1990, Johnstone gave a syntactic characterisation of the equational theories whose associated varieties are cartesian closed. Among such theories are all <i>unary</i> theories—whose models are sets equipped with an action by a monoid <i>M</i>—and all <i>hyperaffine</i> theories—whose models are sets with an action by a Boolean algebra <i>B</i>. We improve on Johnstone’s result by showing that an equational theory is cartesian closed just when its operations have a unique hyperaffine–unary decomposition. It follows that any non-degenerate cartesian closed variety is a variety of sets equipped with compatible actions by a monoid <i>M</i> and a Boolean algebra <i>B</i>; this is the classification theorem of the title.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00012-024-00869-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Cartesian closed varieties I: the classification theorem\",\"authors\":\"Richard Garner\",\"doi\":\"10.1007/s00012-024-00869-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 1990, Johnstone gave a syntactic characterisation of the equational theories whose associated varieties are cartesian closed. Among such theories are all <i>unary</i> theories—whose models are sets equipped with an action by a monoid <i>M</i>—and all <i>hyperaffine</i> theories—whose models are sets with an action by a Boolean algebra <i>B</i>. We improve on Johnstone’s result by showing that an equational theory is cartesian closed just when its operations have a unique hyperaffine–unary decomposition. It follows that any non-degenerate cartesian closed variety is a variety of sets equipped with compatible actions by a monoid <i>M</i> and a Boolean algebra <i>B</i>; this is the classification theorem of the title.</p></div>\",\"PeriodicalId\":50827,\"journal\":{\"name\":\"Algebra Universalis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00012-024-00869-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Universalis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00012-024-00869-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-024-00869-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
1990 年,约翰斯通给出了等式理论的句法特征,这些等式理论的相关品种都是卡特西封闭的。在这些理论中,有所有一元理论(其模型是具有单元 M 作用的集合),也有所有超参数理论(其模型是具有布尔代数 B 作用的集合)。我们对约翰斯通的结果进行了改进,证明只有当等式理论的运算具有唯一的超参数一元分解时,该等式理论才是卡特封闭的。由此可知,任何非退化的卡方闭集都是由单元 M 和布尔代数 B 的相容运算组成的集合集合;这就是标题中的分类定理。
Cartesian closed varieties I: the classification theorem
In 1990, Johnstone gave a syntactic characterisation of the equational theories whose associated varieties are cartesian closed. Among such theories are all unary theories—whose models are sets equipped with an action by a monoid M—and all hyperaffine theories—whose models are sets with an action by a Boolean algebra B. We improve on Johnstone’s result by showing that an equational theory is cartesian closed just when its operations have a unique hyperaffine–unary decomposition. It follows that any non-degenerate cartesian closed variety is a variety of sets equipped with compatible actions by a monoid M and a Boolean algebra B; this is the classification theorem of the title.
期刊介绍:
Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.