Christian Devereux, Yoona Yang, Carles Martí, Judit Zádor, Michael S. Eldred, Habib N. Najm
{"title":"力训练神经网络势能面模型","authors":"Christian Devereux, Yoona Yang, Carles Martí, Judit Zádor, Michael S. Eldred, Habib N. Najm","doi":"10.1002/kin.21759","DOIUrl":null,"url":null,"abstract":"Machine learned chemical potentials have shown great promise as alternatives to conventional computational chemistry methods to represent the potential energy of a given atomic or molecular system as a function of its geometry. However, such potentials are only as good as the data they are trained on, and building a comprehensive training set can be a costly process. Therefore, it is important to extract as much information from training data as possible without further increasing the computational cost. One way to accomplish this is by training on molecular forces in addition to energies. This allows for three additional labels per atom within the molecule. Here we develop a neural network potential energy surface for studying a hydrogen transfer reaction between two isomers of . We show that, for a much smaller training set, force training not only improves the accuracy of the model compared to only training on energies, but also provides more accurate and smoother first and second derivatives that are crucial to run dynamics and extract vibrational frequencies in the context of transition‐state theory. We also demonstrate the importance of choosing the proper force to energy weight ratio for the loss function to minimize the model test error.","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Force training neural network potential energy surface models\",\"authors\":\"Christian Devereux, Yoona Yang, Carles Martí, Judit Zádor, Michael S. Eldred, Habib N. Najm\",\"doi\":\"10.1002/kin.21759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learned chemical potentials have shown great promise as alternatives to conventional computational chemistry methods to represent the potential energy of a given atomic or molecular system as a function of its geometry. However, such potentials are only as good as the data they are trained on, and building a comprehensive training set can be a costly process. Therefore, it is important to extract as much information from training data as possible without further increasing the computational cost. One way to accomplish this is by training on molecular forces in addition to energies. This allows for three additional labels per atom within the molecule. Here we develop a neural network potential energy surface for studying a hydrogen transfer reaction between two isomers of . We show that, for a much smaller training set, force training not only improves the accuracy of the model compared to only training on energies, but also provides more accurate and smoother first and second derivatives that are crucial to run dynamics and extract vibrational frequencies in the context of transition‐state theory. We also demonstrate the importance of choosing the proper force to energy weight ratio for the loss function to minimize the model test error.\",\"PeriodicalId\":13894,\"journal\":{\"name\":\"International Journal of Chemical Kinetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Kinetics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/kin.21759\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/kin.21759","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Force training neural network potential energy surface models
Machine learned chemical potentials have shown great promise as alternatives to conventional computational chemistry methods to represent the potential energy of a given atomic or molecular system as a function of its geometry. However, such potentials are only as good as the data they are trained on, and building a comprehensive training set can be a costly process. Therefore, it is important to extract as much information from training data as possible without further increasing the computational cost. One way to accomplish this is by training on molecular forces in addition to energies. This allows for three additional labels per atom within the molecule. Here we develop a neural network potential energy surface for studying a hydrogen transfer reaction between two isomers of . We show that, for a much smaller training set, force training not only improves the accuracy of the model compared to only training on energies, but also provides more accurate and smoother first and second derivatives that are crucial to run dynamics and extract vibrational frequencies in the context of transition‐state theory. We also demonstrate the importance of choosing the proper force to energy weight ratio for the loss function to minimize the model test error.
期刊介绍:
As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.