重构同类 DRG/DFRP 复合物中的蛋白质结合特异性

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Christian A.E. Westrip, Stephen J. Smerdon, Mathew L. Coleman
{"title":"重构同类 DRG/DFRP 复合物中的蛋白质结合特异性","authors":"Christian A.E. Westrip, Stephen J. Smerdon, Mathew L. Coleman","doi":"10.1016/j.str.2024.08.012","DOIUrl":null,"url":null,"abstract":"<p>Eukaryotes have two paralogous developmentally regulated GTP-binding (DRG) proteins: DRG1 and DRG2, both of which have a conserved binding partner called DRG family regulatory protein 1 and 2 (DFRP1 and DFRP2), respectively. DFRPs are important for the function of DRGs and interact with their respective DRG via a conserved region called the DFRP domain. Despite being highly similar, DRG1 and DRG2 have strict binding specificity for their respective DFRP. Using AlphaFold generated structure models of the human DRG/DFRP complexes, we have biochemically characterized their interactions and identified interface residues involved in determining specificity. This analysis revealed that as few as five mutations in DRG1 can switch binding from DFRP1 to DFRP2. Moreover, while DFRP1 binding confers increased stability and GTPase activity to DRG1, DFRP2 binding only supports increased stability. Overall, this work provides new insight into the structural determinants responsible for the binding specificities of the DRG/DFRP complexes.</p>","PeriodicalId":22168,"journal":{"name":"Structure","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rewiring protein binding specificity in paralogous DRG/DFRP complexes\",\"authors\":\"Christian A.E. Westrip, Stephen J. Smerdon, Mathew L. Coleman\",\"doi\":\"10.1016/j.str.2024.08.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Eukaryotes have two paralogous developmentally regulated GTP-binding (DRG) proteins: DRG1 and DRG2, both of which have a conserved binding partner called DRG family regulatory protein 1 and 2 (DFRP1 and DFRP2), respectively. DFRPs are important for the function of DRGs and interact with their respective DRG via a conserved region called the DFRP domain. Despite being highly similar, DRG1 and DRG2 have strict binding specificity for their respective DFRP. Using AlphaFold generated structure models of the human DRG/DFRP complexes, we have biochemically characterized their interactions and identified interface residues involved in determining specificity. This analysis revealed that as few as five mutations in DRG1 can switch binding from DFRP1 to DFRP2. Moreover, while DFRP1 binding confers increased stability and GTPase activity to DRG1, DFRP2 binding only supports increased stability. Overall, this work provides new insight into the structural determinants responsible for the binding specificities of the DRG/DFRP complexes.</p>\",\"PeriodicalId\":22168,\"journal\":{\"name\":\"Structure\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structure\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.str.2024.08.012\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2024.08.012","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

真核生物有两种同源的发育调控 GTP 结合蛋白(DRG):DRG1和DRG2都有一个保守的结合伙伴,分别称为DRG家族调控蛋白1和2(DFRP1和DFRP2)。DFRP 对 DRG 的功能非常重要,它们通过一个名为 DFRP 结构域的保守区域与各自的 DRG 相互作用。尽管 DRG1 和 DRG2 高度相似,但它们与各自的 DFRP 有严格的结合特异性。利用 AlphaFold 生成的人类 DRG/DFRP 复合物结构模型,我们对它们的相互作用进行了生化鉴定,并确定了决定特异性的界面残基。这项分析表明,DRG1 中只要有五个突变就能将 DFRP1 的结合转换为 DFRP2 的结合。此外,当 DFRP1 的结合赋予 DRG1 更高的稳定性和 GTPase 活性时,DFRP2 的结合只支持更高的稳定性。总之,这项研究为我们提供了有关 DRG/DFRP 复合物结合特异性的结构决定因素的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rewiring protein binding specificity in paralogous DRG/DFRP complexes

Rewiring protein binding specificity in paralogous DRG/DFRP complexes

Eukaryotes have two paralogous developmentally regulated GTP-binding (DRG) proteins: DRG1 and DRG2, both of which have a conserved binding partner called DRG family regulatory protein 1 and 2 (DFRP1 and DFRP2), respectively. DFRPs are important for the function of DRGs and interact with their respective DRG via a conserved region called the DFRP domain. Despite being highly similar, DRG1 and DRG2 have strict binding specificity for their respective DFRP. Using AlphaFold generated structure models of the human DRG/DFRP complexes, we have biochemically characterized their interactions and identified interface residues involved in determining specificity. This analysis revealed that as few as five mutations in DRG1 can switch binding from DFRP1 to DFRP2. Moreover, while DFRP1 binding confers increased stability and GTPase activity to DRG1, DFRP2 binding only supports increased stability. Overall, this work provides new insight into the structural determinants responsible for the binding specificities of the DRG/DFRP complexes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structure
Structure 生物-生化与分子生物学
CiteScore
8.90
自引率
1.80%
发文量
155
审稿时长
3-8 weeks
期刊介绍: Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome. In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信