揭示涂有 MoS2 QDs 的 UiO-66 的结构和光学常数

IF 3.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Abdelaziz M. Aboraia, Shoroog Alraddadi, M. Saad, Yasser.A. M. Ismail, E. R. Shaaban
{"title":"揭示涂有 MoS2 QDs 的 UiO-66 的结构和光学常数","authors":"Abdelaziz M. Aboraia, Shoroog Alraddadi, M. Saad, Yasser.A. M. Ismail, E. R. Shaaban","doi":"10.1007/s11082-024-07348-w","DOIUrl":null,"url":null,"abstract":"<p>We synthesized the pristine and MoS<sub>2</sub> QDs coated the UiO-66 nanostructures employing an eco-friendly drop casting method and studied the physical properties of nanostructures by experimental methods. The X-ray diffraction analysis confirmed that all samples exhibit a singular cubic phase with space group Fm3m. The presence of MoS<sub>2</sub> quantum dots coating led to an observed growth in crystalline size and an increase in structural defects. A rise in the optical energy gap (4.02–5.05 eV) and an improvement in transmittance were noted as the concentration of coated MoS<sub>2</sub> quantum dots increased. The film thickness of UiO-66@X%MOS<sub>2</sub> (X% = 0, 10, 15, 20, and 25) was around 140 ± 5 nm and the increase in the concentration of MoS<sub>2</sub>QDs was found to be inversely proportional to the decrease in refractive index. The absolute part values of the dielectric constant (ε<sub>1</sub>) are more significant than the imaginary part (ε<sub>2</sub>). Optical conductivity decreases with the higher content of embedded MoS<sub>2</sub> QDs (from 2.75 × 10<sup>10</sup> to 1.75 × 10<sup>10</sup>) at wavelengths 300–250 nm. Thus, MoS<sub>2</sub> QDs-coated UiO-66 nanostructures show suitable potential applications in: optoelectronics, efficient conversion of energy, and numerous other works implemented in the sphere of nanotechnology.</p>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revealing the structural and optical constant of the UiO-66 coated with MoS2 QDs\",\"authors\":\"Abdelaziz M. Aboraia, Shoroog Alraddadi, M. Saad, Yasser.A. M. Ismail, E. R. Shaaban\",\"doi\":\"10.1007/s11082-024-07348-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We synthesized the pristine and MoS<sub>2</sub> QDs coated the UiO-66 nanostructures employing an eco-friendly drop casting method and studied the physical properties of nanostructures by experimental methods. The X-ray diffraction analysis confirmed that all samples exhibit a singular cubic phase with space group Fm3m. The presence of MoS<sub>2</sub> quantum dots coating led to an observed growth in crystalline size and an increase in structural defects. A rise in the optical energy gap (4.02–5.05 eV) and an improvement in transmittance were noted as the concentration of coated MoS<sub>2</sub> quantum dots increased. The film thickness of UiO-66@X%MOS<sub>2</sub> (X% = 0, 10, 15, 20, and 25) was around 140 ± 5 nm and the increase in the concentration of MoS<sub>2</sub>QDs was found to be inversely proportional to the decrease in refractive index. The absolute part values of the dielectric constant (ε<sub>1</sub>) are more significant than the imaginary part (ε<sub>2</sub>). Optical conductivity decreases with the higher content of embedded MoS<sub>2</sub> QDs (from 2.75 × 10<sup>10</sup> to 1.75 × 10<sup>10</sup>) at wavelengths 300–250 nm. Thus, MoS<sub>2</sub> QDs-coated UiO-66 nanostructures show suitable potential applications in: optoelectronics, efficient conversion of energy, and numerous other works implemented in the sphere of nanotechnology.</p>\",\"PeriodicalId\":720,\"journal\":{\"name\":\"Optical and Quantum Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical and Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11082-024-07348-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11082-024-07348-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们采用环保的滴注法合成了原始和 MoS2 QDs 涂层 UiO-66 纳米结构,并通过实验方法研究了纳米结构的物理性质。X 射线衍射分析证实,所有样品都呈现出空间群为 Fm3m 的奇立方相。MoS2 量子点涂层的存在导致晶体尺寸的增长和结构缺陷的增加。随着涂覆 MoS2 量子点浓度的增加,光学能隙(4.02-5.05 eV)也有所上升,透射率也有所提高。UiO-66@X%MOS2 (X% = 0、10、15、20 和 25)的薄膜厚度约为 140 ± 5 nm,MoS2QDs 浓度的增加与折射率的降低成反比。介电常数的绝对值(ε1)比虚部值(ε2)更为显著。在波长为 300-250 纳米时,随着嵌入的 MoS2 QD 含量的增加(从 2.75 × 1010 到 1.75 × 1010),光导率会降低。因此,MoS2 QDs 涂层 UiO-66 纳米结构在光电子学、高效能源转换以及纳米技术领域的许多其他工作中都显示出合适的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Revealing the structural and optical constant of the UiO-66 coated with MoS2 QDs

Revealing the structural and optical constant of the UiO-66 coated with MoS2 QDs

We synthesized the pristine and MoS2 QDs coated the UiO-66 nanostructures employing an eco-friendly drop casting method and studied the physical properties of nanostructures by experimental methods. The X-ray diffraction analysis confirmed that all samples exhibit a singular cubic phase with space group Fm3m. The presence of MoS2 quantum dots coating led to an observed growth in crystalline size and an increase in structural defects. A rise in the optical energy gap (4.02–5.05 eV) and an improvement in transmittance were noted as the concentration of coated MoS2 quantum dots increased. The film thickness of UiO-66@X%MOS2 (X% = 0, 10, 15, 20, and 25) was around 140 ± 5 nm and the increase in the concentration of MoS2QDs was found to be inversely proportional to the decrease in refractive index. The absolute part values of the dielectric constant (ε1) are more significant than the imaginary part (ε2). Optical conductivity decreases with the higher content of embedded MoS2 QDs (from 2.75 × 1010 to 1.75 × 1010) at wavelengths 300–250 nm. Thus, MoS2 QDs-coated UiO-66 nanostructures show suitable potential applications in: optoelectronics, efficient conversion of energy, and numerous other works implemented in the sphere of nanotechnology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical and Quantum Electronics
Optical and Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.60
自引率
20.00%
发文量
810
审稿时长
3.8 months
期刊介绍: Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest. Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信