妊娠中晚期母体营养限制与静养对绵羊肝脏、骨骼肌和血液中胎儿代谢轮廓的影响

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Metabolites Pub Date : 2024-08-23 DOI:10.3390/metabo14090465
Brandon I. Smith, Manuel A. Vásquez-Hidalgo, Xiaomeng Li, Kimberly A. Vonnahme, Anna T. Grazul-Bilska, Kendall C. Swanson, Timothy E. Moore, Sarah A. Reed, Kristen E. Govoni
{"title":"妊娠中晚期母体营养限制与静养对绵羊肝脏、骨骼肌和血液中胎儿代谢轮廓的影响","authors":"Brandon I. Smith, Manuel A. Vásquez-Hidalgo, Xiaomeng Li, Kimberly A. Vonnahme, Anna T. Grazul-Bilska, Kendall C. Swanson, Timothy E. Moore, Sarah A. Reed, Kristen E. Govoni","doi":"10.3390/metabo14090465","DOIUrl":null,"url":null,"abstract":"Poor maternal nutrition during gestation negatively affects offspring growth and metabolism. To evaluate the impact of maternal nutrient restriction and realimentation on metabolism in the fetal liver, skeletal muscle, and circulation, on day 50 of gestation, ewes (n = 48) pregnant with singletons were fed 100% (CON) or 60% (RES) of requirements until day 90 of gestation, when a subset of ewes (n = 7/treatment) were euthanized, and fetal samples were collected. The remaining ewes were maintained on a current diet (CON-CON, n = 6; RES-RES, n = 7) or switched to an alternative diet (CON-RES, RES-CON; n = 7/treatment). On day 130 of gestation, the remaining ewes were euthanized, and fetal samples were collected. Fetal liver, longissimus dorsi (LD), and blood metabolites were analyzed using LC-MS/MS, and pathway enrichment analysis was conducted using MetaboAnalyst. Then, 600, 518, and 524 metabolites were identified in the liver, LD, and blood, respectively, including 345 metabolites that were present in all three. Nutrient restriction was associated with changes in amino acid, carbohydrate, lipid, and transulfuration/methionine metabolic pathways, some of which were alleviated by realimentation. Fetal age also affected metabolite abundance. The differential abundance of metabolites involved in amino acid, methionine, betaine, and bile acid metabolism could impact fetal epigenetic regulation, protein synthesis, lipid metabolism, and signaling associated with glucose and lipid metabolism.","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effects of Maternal Nutrient Restriction during Mid to Late Gestation with Realimentation on Fetal Metabolic Profiles in the Liver, Skeletal Muscle, and Blood in Sheep\",\"authors\":\"Brandon I. Smith, Manuel A. Vásquez-Hidalgo, Xiaomeng Li, Kimberly A. Vonnahme, Anna T. Grazul-Bilska, Kendall C. Swanson, Timothy E. Moore, Sarah A. Reed, Kristen E. Govoni\",\"doi\":\"10.3390/metabo14090465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Poor maternal nutrition during gestation negatively affects offspring growth and metabolism. To evaluate the impact of maternal nutrient restriction and realimentation on metabolism in the fetal liver, skeletal muscle, and circulation, on day 50 of gestation, ewes (n = 48) pregnant with singletons were fed 100% (CON) or 60% (RES) of requirements until day 90 of gestation, when a subset of ewes (n = 7/treatment) were euthanized, and fetal samples were collected. The remaining ewes were maintained on a current diet (CON-CON, n = 6; RES-RES, n = 7) or switched to an alternative diet (CON-RES, RES-CON; n = 7/treatment). On day 130 of gestation, the remaining ewes were euthanized, and fetal samples were collected. Fetal liver, longissimus dorsi (LD), and blood metabolites were analyzed using LC-MS/MS, and pathway enrichment analysis was conducted using MetaboAnalyst. Then, 600, 518, and 524 metabolites were identified in the liver, LD, and blood, respectively, including 345 metabolites that were present in all three. Nutrient restriction was associated with changes in amino acid, carbohydrate, lipid, and transulfuration/methionine metabolic pathways, some of which were alleviated by realimentation. Fetal age also affected metabolite abundance. The differential abundance of metabolites involved in amino acid, methionine, betaine, and bile acid metabolism could impact fetal epigenetic regulation, protein synthesis, lipid metabolism, and signaling associated with glucose and lipid metabolism.\",\"PeriodicalId\":18496,\"journal\":{\"name\":\"Metabolites\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolites\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/metabo14090465\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo14090465","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

妊娠期间母体营养不良会对后代的生长和新陈代谢产生负面影响。为了评估母体营养限制和营养调整对胎儿肝脏、骨骼肌和血液循环代谢的影响,在妊娠第50天,给怀有单胎的母羊(n = 48)喂食100%(CON)或60%(RES)的食物,直到妊娠第90天,然后安乐死一部分母羊(n = 7/处理),并采集胎儿样本。剩下的母羊继续食用目前的日粮(CON-CON,n = 6;RES-RES,n = 7)或改用其他日粮(CON-RES,RES-CON;n = 7/处理)。妊娠第 130 天,剩余母羊被安乐死,并采集胎儿样本。使用 LC-MS/MS 分析胎儿肝脏、背阔肌(LD)和血液中的代谢物,并使用 MetaboAnalyst 进行途径富集分析。随后,在肝脏、腓肠肌和血液中分别鉴定出了600、518和524种代谢物,其中345种代谢物在这三种代谢物中都存在。营养限制与氨基酸、碳水化合物、脂质和转硫化/蛋氨酸代谢途径的变化有关,其中一些变化可通过补充营养得到缓解。胎儿年龄也会影响代谢物的丰度。参与氨基酸、蛋氨酸、甜菜碱和胆汁酸代谢的代谢物丰度不同,可能会影响胎儿的表观遗传调节、蛋白质合成、脂质代谢以及与葡萄糖和脂质代谢相关的信号传导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Effects of Maternal Nutrient Restriction during Mid to Late Gestation with Realimentation on Fetal Metabolic Profiles in the Liver, Skeletal Muscle, and Blood in Sheep
Poor maternal nutrition during gestation negatively affects offspring growth and metabolism. To evaluate the impact of maternal nutrient restriction and realimentation on metabolism in the fetal liver, skeletal muscle, and circulation, on day 50 of gestation, ewes (n = 48) pregnant with singletons were fed 100% (CON) or 60% (RES) of requirements until day 90 of gestation, when a subset of ewes (n = 7/treatment) were euthanized, and fetal samples were collected. The remaining ewes were maintained on a current diet (CON-CON, n = 6; RES-RES, n = 7) or switched to an alternative diet (CON-RES, RES-CON; n = 7/treatment). On day 130 of gestation, the remaining ewes were euthanized, and fetal samples were collected. Fetal liver, longissimus dorsi (LD), and blood metabolites were analyzed using LC-MS/MS, and pathway enrichment analysis was conducted using MetaboAnalyst. Then, 600, 518, and 524 metabolites were identified in the liver, LD, and blood, respectively, including 345 metabolites that were present in all three. Nutrient restriction was associated with changes in amino acid, carbohydrate, lipid, and transulfuration/methionine metabolic pathways, some of which were alleviated by realimentation. Fetal age also affected metabolite abundance. The differential abundance of metabolites involved in amino acid, methionine, betaine, and bile acid metabolism could impact fetal epigenetic regulation, protein synthesis, lipid metabolism, and signaling associated with glucose and lipid metabolism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metabolites
Metabolites Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍: Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信