Tian Jiao, Ruilu Zhou, Junrong Jiao, Junna Jiao, Qin Lian
{"title":"挤压/喷墨打印用于伤口愈合和结构重建的 Verteporfin 负载双层皮肤替代物","authors":"Tian Jiao, Ruilu Zhou, Junrong Jiao, Junna Jiao, Qin Lian","doi":"10.1007/s42235-024-00585-5","DOIUrl":null,"url":null,"abstract":"<div><p>The shortage of transplantable skin is the leading cause of death in patients with extensive skin defect. Addressing this challenge urgently requires the development of skin substitutes capable of wound repair and facilitating skin regeneration. In this study, a biomimetic bilayer skin tissue model consisting of collagen, gelatin/sodium alginate, fibroblasts, human umbilical vein endothelial cells, keratinocytes, melanocytes, and verteporfin was devised. Then, the skin model was fabricated using precise extrusion/inkjet bioprinters, and it reconstruction capabilities were evaluated through skin defect repair experiments. The printed skin tissue reduced the inflammatory response of the wound by 38% and inhibited the expression of TGF-β and YAP, and promoted the transformation of macrophages from M1 phenotype to M2 phenotype, thus promoting the reasonable reconstruction of fibronectin and collagen on the wound, finally promoting the wound healing, and reducing the wound contraction and scar formation. In addition, the proliferation and differentiation of human umbilical vein endothelial cells, keratinocytes, and melanocytes in printed skin increased the number of regenerated blood vessels by 123%, while promoting the reconstruction of multilayer epidermal structure and skin color. The outcomes of this investigation present a promising skin model and therapeutic strategy for skin injury, offering a potential avenue for the reconstruction of skin structure and function.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 6","pages":"2969 - 2984"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extrusion/Inkjet Printing of Verteporfin-Loaded Bilayer Skin Substitutes for Wound Healing and Structure Reconstruction\",\"authors\":\"Tian Jiao, Ruilu Zhou, Junrong Jiao, Junna Jiao, Qin Lian\",\"doi\":\"10.1007/s42235-024-00585-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The shortage of transplantable skin is the leading cause of death in patients with extensive skin defect. Addressing this challenge urgently requires the development of skin substitutes capable of wound repair and facilitating skin regeneration. In this study, a biomimetic bilayer skin tissue model consisting of collagen, gelatin/sodium alginate, fibroblasts, human umbilical vein endothelial cells, keratinocytes, melanocytes, and verteporfin was devised. Then, the skin model was fabricated using precise extrusion/inkjet bioprinters, and it reconstruction capabilities were evaluated through skin defect repair experiments. The printed skin tissue reduced the inflammatory response of the wound by 38% and inhibited the expression of TGF-β and YAP, and promoted the transformation of macrophages from M1 phenotype to M2 phenotype, thus promoting the reasonable reconstruction of fibronectin and collagen on the wound, finally promoting the wound healing, and reducing the wound contraction and scar formation. In addition, the proliferation and differentiation of human umbilical vein endothelial cells, keratinocytes, and melanocytes in printed skin increased the number of regenerated blood vessels by 123%, while promoting the reconstruction of multilayer epidermal structure and skin color. The outcomes of this investigation present a promising skin model and therapeutic strategy for skin injury, offering a potential avenue for the reconstruction of skin structure and function.</p></div>\",\"PeriodicalId\":614,\"journal\":{\"name\":\"Journal of Bionic Engineering\",\"volume\":\"21 6\",\"pages\":\"2969 - 2984\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bionic Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42235-024-00585-5\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00585-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Extrusion/Inkjet Printing of Verteporfin-Loaded Bilayer Skin Substitutes for Wound Healing and Structure Reconstruction
The shortage of transplantable skin is the leading cause of death in patients with extensive skin defect. Addressing this challenge urgently requires the development of skin substitutes capable of wound repair and facilitating skin regeneration. In this study, a biomimetic bilayer skin tissue model consisting of collagen, gelatin/sodium alginate, fibroblasts, human umbilical vein endothelial cells, keratinocytes, melanocytes, and verteporfin was devised. Then, the skin model was fabricated using precise extrusion/inkjet bioprinters, and it reconstruction capabilities were evaluated through skin defect repair experiments. The printed skin tissue reduced the inflammatory response of the wound by 38% and inhibited the expression of TGF-β and YAP, and promoted the transformation of macrophages from M1 phenotype to M2 phenotype, thus promoting the reasonable reconstruction of fibronectin and collagen on the wound, finally promoting the wound healing, and reducing the wound contraction and scar formation. In addition, the proliferation and differentiation of human umbilical vein endothelial cells, keratinocytes, and melanocytes in printed skin increased the number of regenerated blood vessels by 123%, while promoting the reconstruction of multilayer epidermal structure and skin color. The outcomes of this investigation present a promising skin model and therapeutic strategy for skin injury, offering a potential avenue for the reconstruction of skin structure and function.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.