Jiaqing Chang, Qiaolin Song, Ruhe Li, Rongchang Xu, Chaowei Dong, Zhaobang Li, Lang Liu, Tingting Lin, Qilin Bi, Teng Shen
{"title":"磁性薄膜微型机器人的设计与运动特性","authors":"Jiaqing Chang, Qiaolin Song, Ruhe Li, Rongchang Xu, Chaowei Dong, Zhaobang Li, Lang Liu, Tingting Lin, Qilin Bi, Teng Shen","doi":"10.1007/s42235-024-00588-2","DOIUrl":null,"url":null,"abstract":"<p>Biomimetic micro-robot technology based on non-contact and cable-free magnetic actuation has become one of the crucial focuses of future biomedical research and micro-industrial development. Inspired by the motion characteristics of ray fish, this article proposes a micro-robot with magnetic controlled bionic ray structure. The micro-robot is made of soft elastic materials such as poly dimethyl siloxane (PDMS), Ethylene-Propylene-Diene Monomer (EPDM), and magnetic material Neodymium Iron Boron (NdFeB) nanoparticles. The external driving magnetic field is a periodic oscillating magnetic field generated by a Helmholtz coil. In order to verify the feasibility of the ray-inspired micro-robot, the motion principle was analyzed and several experiments were carried out. Experimental results demonstrated that the ray-inspired micro-robot can excellently mimic the crucial swimming characteristics of rays under the driving force of a oscillating magnetic field with an intensity of 5 mT and a frequency of 5 Hz, the swimming speed of the biomimetic micro-robot can reach nearly 2 body lengths per second. Analysis shows that the speed and stability of the micro-robot primarily depends not only on the amplitude and frequency of the vertical oscillating magnetic field, but also on the magnitude of the horizontal uniform magnetic field. This article demonstrates that the designed biomimetic micro-robot has the potential application of remotely performing specialized tasks in confined, complex environments such as microchannel-based scenarios.</p>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"13 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Motion Characteristics of a Ray-Inspired Micro-Robot Made of Magnetic Film\",\"authors\":\"Jiaqing Chang, Qiaolin Song, Ruhe Li, Rongchang Xu, Chaowei Dong, Zhaobang Li, Lang Liu, Tingting Lin, Qilin Bi, Teng Shen\",\"doi\":\"10.1007/s42235-024-00588-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biomimetic micro-robot technology based on non-contact and cable-free magnetic actuation has become one of the crucial focuses of future biomedical research and micro-industrial development. Inspired by the motion characteristics of ray fish, this article proposes a micro-robot with magnetic controlled bionic ray structure. The micro-robot is made of soft elastic materials such as poly dimethyl siloxane (PDMS), Ethylene-Propylene-Diene Monomer (EPDM), and magnetic material Neodymium Iron Boron (NdFeB) nanoparticles. The external driving magnetic field is a periodic oscillating magnetic field generated by a Helmholtz coil. In order to verify the feasibility of the ray-inspired micro-robot, the motion principle was analyzed and several experiments were carried out. Experimental results demonstrated that the ray-inspired micro-robot can excellently mimic the crucial swimming characteristics of rays under the driving force of a oscillating magnetic field with an intensity of 5 mT and a frequency of 5 Hz, the swimming speed of the biomimetic micro-robot can reach nearly 2 body lengths per second. Analysis shows that the speed and stability of the micro-robot primarily depends not only on the amplitude and frequency of the vertical oscillating magnetic field, but also on the magnitude of the horizontal uniform magnetic field. This article demonstrates that the designed biomimetic micro-robot has the potential application of remotely performing specialized tasks in confined, complex environments such as microchannel-based scenarios.</p>\",\"PeriodicalId\":614,\"journal\":{\"name\":\"Journal of Bionic Engineering\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bionic Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s42235-024-00588-2\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s42235-024-00588-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Design and Motion Characteristics of a Ray-Inspired Micro-Robot Made of Magnetic Film
Biomimetic micro-robot technology based on non-contact and cable-free magnetic actuation has become one of the crucial focuses of future biomedical research and micro-industrial development. Inspired by the motion characteristics of ray fish, this article proposes a micro-robot with magnetic controlled bionic ray structure. The micro-robot is made of soft elastic materials such as poly dimethyl siloxane (PDMS), Ethylene-Propylene-Diene Monomer (EPDM), and magnetic material Neodymium Iron Boron (NdFeB) nanoparticles. The external driving magnetic field is a periodic oscillating magnetic field generated by a Helmholtz coil. In order to verify the feasibility of the ray-inspired micro-robot, the motion principle was analyzed and several experiments were carried out. Experimental results demonstrated that the ray-inspired micro-robot can excellently mimic the crucial swimming characteristics of rays under the driving force of a oscillating magnetic field with an intensity of 5 mT and a frequency of 5 Hz, the swimming speed of the biomimetic micro-robot can reach nearly 2 body lengths per second. Analysis shows that the speed and stability of the micro-robot primarily depends not only on the amplitude and frequency of the vertical oscillating magnetic field, but also on the magnitude of the horizontal uniform magnetic field. This article demonstrates that the designed biomimetic micro-robot has the potential application of remotely performing specialized tasks in confined, complex environments such as microchannel-based scenarios.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.