Lifang Yang, Long Yang, Haofeng Wang, Mengmeng Li, Zhigang Shang
{"title":"从感知到行动:鸽子的脑际信息传递","authors":"Lifang Yang, Long Yang, Haofeng Wang, Mengmeng Li, Zhigang Shang","doi":"10.1007/s42235-024-00581-9","DOIUrl":null,"url":null,"abstract":"<div><p>Along with the flourishing of brain-computer interface technology, the brain-to-brain information transmission between different organisms has received high attention in recent years. However, specific information transmission mode and implementation technology need to be further studied. In this paper, we constructed a brain-to-brain information transmission system between pigeons based on the neural information decoding and electrical stimulation encoding technologies. Our system consists of three parts: (1) the “perception pigeon” learns to distinguish different visual stimuli with two discrepant frequencies, (2) the computer decodes the stimuli based on the neural signals recorded from the “perception pigeon” through a frequency identification algorithm (neural information decoding) and encodes them into different kinds of electrical pulses, (3) the “action pigeon” receives the Intracortical Microstimulation (ICMS) and executes corresponding key-pecking actions through discriminative learning (electrical stimulation encoding). The experimental results show that our brain-to-brain system achieves information transmission from perception to action between two pigeons with the average accuracy of about 72%. Our study verifies the feasibility of information transmission between inter-brain based on neural information decoding and ICMS encoding, providing important technical methods and experimental program references for the development of brain-to-brain communication technology.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 6","pages":"2913 - 2923"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Perception to Action: Brain-to-Brain Information Transmission of Pigeons\",\"authors\":\"Lifang Yang, Long Yang, Haofeng Wang, Mengmeng Li, Zhigang Shang\",\"doi\":\"10.1007/s42235-024-00581-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Along with the flourishing of brain-computer interface technology, the brain-to-brain information transmission between different organisms has received high attention in recent years. However, specific information transmission mode and implementation technology need to be further studied. In this paper, we constructed a brain-to-brain information transmission system between pigeons based on the neural information decoding and electrical stimulation encoding technologies. Our system consists of three parts: (1) the “perception pigeon” learns to distinguish different visual stimuli with two discrepant frequencies, (2) the computer decodes the stimuli based on the neural signals recorded from the “perception pigeon” through a frequency identification algorithm (neural information decoding) and encodes them into different kinds of electrical pulses, (3) the “action pigeon” receives the Intracortical Microstimulation (ICMS) and executes corresponding key-pecking actions through discriminative learning (electrical stimulation encoding). The experimental results show that our brain-to-brain system achieves information transmission from perception to action between two pigeons with the average accuracy of about 72%. Our study verifies the feasibility of information transmission between inter-brain based on neural information decoding and ICMS encoding, providing important technical methods and experimental program references for the development of brain-to-brain communication technology.</p></div>\",\"PeriodicalId\":614,\"journal\":{\"name\":\"Journal of Bionic Engineering\",\"volume\":\"21 6\",\"pages\":\"2913 - 2923\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bionic Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42235-024-00581-9\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00581-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
From Perception to Action: Brain-to-Brain Information Transmission of Pigeons
Along with the flourishing of brain-computer interface technology, the brain-to-brain information transmission between different organisms has received high attention in recent years. However, specific information transmission mode and implementation technology need to be further studied. In this paper, we constructed a brain-to-brain information transmission system between pigeons based on the neural information decoding and electrical stimulation encoding technologies. Our system consists of three parts: (1) the “perception pigeon” learns to distinguish different visual stimuli with two discrepant frequencies, (2) the computer decodes the stimuli based on the neural signals recorded from the “perception pigeon” through a frequency identification algorithm (neural information decoding) and encodes them into different kinds of electrical pulses, (3) the “action pigeon” receives the Intracortical Microstimulation (ICMS) and executes corresponding key-pecking actions through discriminative learning (electrical stimulation encoding). The experimental results show that our brain-to-brain system achieves information transmission from perception to action between two pigeons with the average accuracy of about 72%. Our study verifies the feasibility of information transmission between inter-brain based on neural information decoding and ICMS encoding, providing important technical methods and experimental program references for the development of brain-to-brain communication technology.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.